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Abstract. Recent work has integrated semantics into the 3D scene mod-
els produced by visual SLAM systems. Though these systems operate
close to real time, there is lacking a study of the ways to achieve real-
time performance by trading off between semantic model accuracy and
computational requirements. ORB-SLAM2 provides good scene accuracy
and real-time processing while not requiring GPUs [1]. Following a ‘sin-
gle view’ approach of overlaying a dense semantic map over the sparse
SLAM scene model, we explore a method for automatically tuning the
parameters of the system such that it operates in real time while maxi-
mizing prediction accuracy and map density.
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1 Introduction

We describe a method for associating semantic predictions with the 3D model
of a sparse, feature-based SLAM system. We perform visual SLAM on the Scan-
Net dataset [3] using ORB-SLAM2 [11], while passing each frame used by the
SLAM system through a convolutional neural network for semantic segmenta-
tion, based on MobileNets [6]. The output of the neural network is at one eighth
of the resolution of the input image in each dimension; we use the fully con-
nected conditional random field (CRF) method of Krähenbühl and Koltun [7]
to upsample and refine the segmentation images.

The predictions associated with each pixel in each inference frame are pro-
jected into the 3D scene; we do not fuse predictions from multiple views. We
show that this method has the advantage that we can fit a simple model to pre-
dict the accuracy of the 3D map as a function of the system parameters. We use
this model to automatically tune the parameters such that the system operates
in real time on a given platform while maximizing performance metrics. The fol-
lowing sections describe the various components of the system. For evaluation,
we have two metrics for accuracy. The overall accuracy measures the proportion
of correctly labelled points. The per-class accuracy is the mean of the proportion
of correctly labelled points for each class, and is sometimes more useful than the
overall accuracy in an imbalanced dataset.

Finally, in the appendix we describe our experience combining predictions
from multiple views in order to predict the labels of points in the 3D map. This
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technique does not work well in the sparse, feature-based setting, because it
restricts predictions to object boundaries, which are harder to classify.

2 Related Work

In this section we describe other approaches for incorporating semantic pre-
dictions into the 3D model of a SLAM system. SemanticFusion [10] combines
predictions from a convolutional neural network from multiple views, and as-
sociates them with a dense surfel based reconstruction produced by a SLAM
system. Theirs was the first work to demonstrate, in real time, the use of pixel
correspondences between frames from a SLAM system to fuse per-frame segmen-
tations in order to produce an accurate 3D semantic map. McCormac et al. show
that combining predictions from multiple views results in greater 3D semantic
map accuracy when used in conjunction with a dense SLAM system, while our
initial experiments (see Appendix) do not yield similar results for the case of an
unmodified, sparse, feature-based SLAM system.

They use as their SLAM system ElasticFusion [16], which constructs a dense
surfel-based model. One consequence is that, because they associate predictions
with every surfel in the dense model, their Bayesian update step, which combines
predictions from individual frames, takes almost as long as the forward pass of
the CNN. In our work, we avoid combining predictions.

In order to achieve the real-time construction of a 3D semantic map, Mc-
Cormac et al. reduce the image size fed into the neural network, to 224 × 224
or 320 × 240 depending on the network used, and perform the inference on a
high end GPU (an Nvidia TITAN Black). In our system, the use of the efficient
MobileNets networks reduces the computational cost of inference. This, and our
use of parameters other than image resolution to reduce computational cost at
the expense of accuracy, means we are able to run the system at real time at full
VGA resolution on more moderate hardware. In our experiments, inference is
performed on an Nvidia GTX 1050 (Notebook), with a peak power consumption
of around 50 W, one fifth of that of the Titan Black.

As in our work, McCormac et al. use the CRF scheme of Krähenbühl and
Koltun [7] to refine their segmentation map. However, they apply the CRF to the
3D surfel map, whereas we apply it to the 2D segmentation images before pre-
dictions are associated with the 3D model. We have not performed experiments
to compare these two approaches.

Also related is the work of Pillai and Leonard, in which correspondences
between frames, according to a SLAM system, are used to achieve strong object
recognition performance [12]. As in our own work, they use ORB-SLAM to
produce a sparse 3D map of the scene. In contrast to our work, the point cloud
is clustered after points in low density regions are removed, and the clusters
are taken to represent objects. Bounding boxes for each object are computed by
projecting back down onto the keyframes, and a set of features are then computed
for each object for each frame, and a linear classifier uses these features to
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predict the class of the object. As in SemanticFusion, a conditional independence
assumption is used when combining the predictions from multiple frames.

This object recognition system is unable to perform in real-time, taking 1.6 s
per keyframe—with approximately 1 s between keyframes with default ORB-
SLAM2 settings on most datasets—to perform the feature extraction and encod-
ing steps. However, unlike this work and SemanticFusion, the SLAM supported
object recognition work is done without the use of a GPU. Another difference
with our work is that we construct a 3D semantic map, with a different predic-
tion associated with every point in the map but no notion of ‘objects’, whereas
Pillai and Leonard perform object recognition.

Sünderhauf et al. combine predictions from multiple views by using a Bayesian
filter method [14], assuming first order Markov properties. Vineet et al. use a
voxel-based map representation, with voxel predictions being updated based on
sequential single-view predictions [15]. Their update rules are designed to quickly
correct map corruptions caused by moving objects within the scene.

Kundu et al. [8] and Li and Belaroussi [9] construct a 3D semantic map from
monocular input, rather than the RGB-D input we use here. Kundu et al. use
semantic cues to constrain the 3D structure of the scene in a voxel-based model.
Li and Belaroussi use a scale-drift aware method that allows them to transition
between indoor and outdoor scenes. Häne et al. [4] treat image segmentation and
dense 3D (voxel-based) reconstruction as a joint inference problem, allowing each
task to inform the other.

3 Configuring the Convolutional Neural Network

3.1 The ScanNet Dataset

The ScanNet dataset [3] consists of 1513 video sequences with 2.5 million frames.
For each frame there is an RGB image, a depth image, and per-pixel labels with
1163 distinct object classes, which we can use to evaluate semantic segmentation
accuracy. The dataset also contains the groundtruth for the camera trajectory
for each scene, which can be used to evaluate the SLAM system.

We use the same train/validation/test split of the dataset as used in the
classification tasks in the original ScanNet paper; we use 1045 of the scenes to
train the neural network, 156 to tune the network hyperparameters and CRF
parameters, and 312 to evaluate our system.

3.2 MobileNet Semantic Segmentation Network

We use a modified version of MobileNets [6] for semantic segmentation. We
train the network on the twenty most common classes in the dataset, and merge
some similar classes, such as ‘chair’ and ‘office chair’., We reserve class zero for
unlabelled pixels. We modified the network to take four input channels, so that
the network takes the RGB-D images as input. The RGB and depth inputs are
normalized such that values lie between −1 and 1.
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We removed the average pooling layer and reduced the stride from 2 to 1
in two convolutional layers, so that the output is a low resolution semantic
segmentation of the input image. We also modified some layers after the reduced
stride layers to be atrous convolutions with a dilation of 2 to compensate for the
reduced receptive field, as in the DeepLab system [2].

The MobileNets networks have two parameters to trade off accuracy and
computation. In the MobileNets paper, lowering the input image resolution re-
duces the accuracy of the prediction. In our work, lowering the resolution lowers
the output segmentation resolution. We control the input resolution with the
rescale factor parameter r, which scales both the height and width. The Mo-
bileNets networks also have a width multiplier w, which controls the number of
feature channels throughout the network. In this work we train two versions of
the MobileNets, with width multiplier values of w = 0.5 and w = 1.0.

3.3 Conditional Random Field Post-Processing

As in the work of Krähenbühl and Koltun, and in the DeepLab system [2], we
apply bilinear upsampling and conditional random field (CRF) post-processing
to the output of the network to obtain a segmentation the same size as the input
image. The upsampled output is coarse, with smoothed edges and lacking fine
detail. The CRF is used to refine the segmentation.

Fig. 1: Top left: a test image from ScanNet. Top right: ground truth labels.
Bottom row: pre-CRF, then CRF-processed images with 3 and 5 iterations, in
which the segmentation conforms more closely to the ground truth.

A CRF is a graphical model for expressing the posterior distribution over a
collection of variables via the relative compatibilities of assignments to subsets
of those variables. Here it is used to express a preference that pixels close to each
other in the image and in colour-space should be labelled similarly. The effect
is to assign more probability to segmentations that are smooth, without pixels
that are assigned a different label to all of their neighbours, and to refine the
edges in the segmentation to conform to sharp colour changes. An example of
applying a dense CRF in this way is shown in Figure 1.
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The posterior of the CRF is approximated iteratively. We can vary the num-
ber of CRF iterations I in order to trade off accuracy against computational
cost. A CRF can be implemented as a layer in a deep neural network [17], which
would enable end-to-end training and would reduce CRF inference time. How-
ever, in this work we have used an available C++ implementation [7]1. We first
train the network and then separately fit the parameters of the CRF.

3.4 Training and Parameter Fitting

We use a cross entropy loss function with L2 regularization, and use batch nor-
malization throughout the network. No loss is assigned for unlabelled pixels. We
correct for class imbalance by making the per-class loss inversely proportional to
the frequency of the class. Two modified MobileNets networks, with width mul-
tiplier parameters of 0.5 and 1.0, were trained for 85,000 and 165,000 iterations
respectively using a batch size of 32 on a TITAN X (Pascal). Each batch was
rescaled randomly between 0.25 and 1.0 times the original image size (in terms
of area), and then cropped to a random 224× 224 region.

We tune the hyperparameters—the learning rate and the L2 regularization
parameter—by training until convergence ten times with randomly sampled hy-
perparameter settings, and choosing the settings that maximize the mean per-
class accuracy on the validation set. To tune the CRF parameters, we randomly
sample values 50 times, each time evaluating the post-CRF per-class accuracy
on 312 images from the validation set—two images per scene.

Table 1: Overall / per-class accuracy (%) (with CRF iterations I = 5) on 312
images from validation and test sets.

(a) Width multiplier w = 0.5.

Validation Test

Pre-CRF 57.3 / 57.4 55.5 / 55.9
Post-CRF 58.2 / 59.0 56.6 / 56.3

(b) Width multiplier w = 1.0.

Validation Test

Pre-CRF 66.2 / 60.0 64.9 / 57.7
Post-CRF 67.4 / 60.7 65.9 / 58.4

Table 1 gives the accuracy of the two versions of the network on the frames
of the ScanNet dataset, with width multipliers w = 0.5 and w = 1.0, before and
after applying the CRF step (with iterations I = 5), on 312 images each of the
validation and test sets. Figure 2 shows some example predictions made by the
network with width multiplier w = 1.0 after applying the CRF.

4 Feature-Based SLAM: ORB-SLAM2

We use ORB-SLAM2 [11], a feature-based SLAM system that picks out a rela-
tively small number of ‘ORB features’ in each frame. These features, also called

1 We use pydensecrf, available at github.com/lucasb-eyer/pydensecrf.

https://github.com/lucasb-eyer/pydensecrf
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Fig. 2: Example images and predictions using width multiplier w = 1.0. Left:
input images. Middle: ground truth labels. Right: predicted labels.

keypoints, are invariant to small changes in scale and rotation [13], and so corre-
sponding features can be found between different frames. These correspondences
are then used to jointly infer the trajectory of the camera and the positions of
these points in 3D space. We will call the 3D points, which make up the model
of the scene as constructed by ORB-SLAM2, MapPoints, in accordance with the
terminology used in the ORB-SLAM2 source code.

4.1 Semantic Map Construction

We construct the 3D semantic map by projecting all predictions of the segmen-
tation network into the 3D scene maintained by ORB-SLAM2. We can do this
by using the SLAM system’s prediction for the camera pose and the depth val-
ues from the depth camera. The result is that we overlay a dense or semi-dense
semantic map on top of the sparse 3D model produced by the SLAM system.

Since the SLAM system does not know how pixels other than keypoints/features
correspond to each other in different frames, we cannot combine predictions from
multiple views; the role of the SLAM system in constructing the semantic map
is restricted to estimating the current camera pose. The structure of the system
in this ‘single view’ setting is shown in Figure 3. For comparison, a feature-based
‘multi-view’ approach is described in the appendix.

5 Performance Models

In the single view setting, single-frame predictions are embedded directly into
the 3D semantic map using the current estimate of the camera pose from the
SLAM system and the depth channel of the images. If we assume that both are
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Fig. 3: Class label predictions from a deep network for semantic segmentation are
passed to the SLAM system along with depth information. The SLAM system
overlays this dense semantic map over its sparse 3D scene model.

accurate, then the accuracy of the single view 3D semantic map on a scene in
the ScanNet dataset is the same as the accuracy of the semantic segmentation
network averaged across the frames in that scene. This allows us to, unlike in the
multiview setting described in the appendix, efficiently estimate the 3D semantic
map accuracy by measuring the accuracy of the segmentation on a subset of
frames.

The parameters listed in Section 5.1 affect the map accuracy, the map density,
the inference time per frame, and the number of frames between inference frames.
The key idea of this section is that we can fit an accuracy and a density model
offline and then, on a given platform, or with a given new implementation of one
of the components of the system, we can efficiently fit a timing model online.
The three models—for the accuracy, density, and inference time—then allow
us to choose parameter settings such that we can run the system in real time
while maximizing the accuracy and density of the semantic map. The following
sections describe the density, accuracy, and timing models used and the fitting
process for the timing model.

5.1 Accuracy, Density, and Computation Trade Off Parameters

We have various means to reduce the amount of computation required at the
cost of reducing the accuracy and density of the produced 3D semantic map. The
MobileNets semantic segmentation network has a width multiplier w and input
resolution rescale factor r parameters. As well as rescaling the input images,
we can crop them using a crop factor c, feeding only a region of each frame to
the segmentation network. Another possibility is to skip keyframes using a skip
factor s, performing inference on one frame in every s.

We can also vary the number of CRF iterations I. The method used to
compute the posterior of the CRF is iterative, with the approximation improving
with the number of iterations. We vary the number of iterations between zero—
leaving the network output unaltered— and five.
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5.2 Density Model

The density of the semantic map, measured by the number of points in the map,
is a simple function of the rescale and crop factors r and c and the skip parameter
s; it is simply the number of individual pixel predictions that are projected into
the map. The resolution of the semantic segmentation output scales with the
square of each of the rescale and crop factors, whereas the number of inference
frames with predictions being inserted into the map scales inversely with the
skip parameter. The map density is therefore proportional to

fdensity(r, c, s) =
r2c2

s
.

5.3 Accuracy Model

We evaluate the accuracy of the 3D semantic map by projecting the predic-
tions onto individual frames and comparing to the groundtruth. Therefore, the
accuracy of the 3D map on a scene is the same as the accuracy of the seman-
tic segmentation network averaged over frames in that scene. The accuracies
(overall and per-class) of the semantic segmentation network are functions of
the width multiplier w, the number of CRF iterations I—we have already seen
the effect of these parameters on the accuracy of the segmentation network in
Table 1—and possibly of the rescale and crop factors r and c. We express these
as two functions foverall(w, I, r, c) and fper-class(w, I, r, c). We wish to fit offline

two functions f̂overall and f̂per-class that will be used to estimate the accuracies
for given parameter settings.

We randomly sampled 3500 times from the joint parameter space, with w ∈
{0.5, 1.0}, I ∈ {0, 1, . . . , 5}, and with r and c sampled uniformly from [0.469, 1.0],
rejecting the sample if r · c < 0.469. This reflects the way that rescaling and
cropping were performed during training, with the input image resolution always
at least 224 × 224. For each setting of the parameters, we measure the overall
and per-class accuracy on 32 random frames from the dataset.

We found by inspection and by conditional mutual information measures
that, conditional on the width multiplier and number of CRF iterations, the
rescale and crop factors are not informative for predicting accuracy values2. Since
the width multiplier and number of CRF iterations are discrete parameters with
a small number of values—there are twelve combinations in total—we use the
empirical mean overall and per-class accuracies for each parameter setting as
our estimate for f̂overall(w, I) and f̂per-class(w, I). These estimates are shown in
Figure 4, along with their associated standard errors.

5.4 Timing Model

The inference time of the semantic segmentation network is a function of the
width multiplier w and the rescale and crop factors r and c, with the rescale and

2 To measure conditional mutual information, we used the scikit-feature feature selec-
tion library available at github.com/jundongl/scikit-feature.

https://github.com/jundongl/scikit-feature
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Fig. 4: Mean overall and per-class accuracies and standard errors. The mean
values are used as a predictive model of the accuracy of the 3D semantic map
as a function of the width multiplier and number of CRF iterations.

crop factors acting symmetrically to reduce the size of the input and subsequent
layers in the network. We express the inference time as fnet(w, rc). The inference
time of the CRF step is a function of the number of CRF iterations I and
the rescale and crop factors, expressed as fCRF (I, rc). We wish to fit online

two functions f̂net and f̂CRF in order to estimate inference time when running
the system on a new platform, or when we have new implementations of the
components of the system. For example, we may have switched from running
the neural network on a GPU to a CPU, or switched the CRF inference to a
neural implementation.

We make the assumption that each of these functions can be approximated
by a low order polynomial, with terms up to the second power in each variable.
I.e., we assume that f(x, y) ≈ {aijxiyj |(i, j) ∈ {0, 1, 2}2}. We also know that we
can set the CRF part of the timing model to zero if the number of CRF iterations
is zero. We fit the timing models by expanding the independent variables out
to the appropriate polynomial basis, and then use linear regression with a mean
squared error loss function to fit the parameters.

Once the timing model has been fit, it is used to restrict the choice of pa-
rameters to those that will allow inference to be performed in real time. On
the ScanNet dataset, ORB-SLAM2 selects a keyframe every 1040 ms on average.
Since inference is performed on one in every s keyframes, where s is the skip
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parameter, we restrict ourselves to parameter settings where

f̂net(w, rc) + f̂CRF (I, rc)

s
≤ 1040 ms .

5.5 Example use of the Parameter Tuning Method

We collected timing information for 170 settings of the parameters with the
semantic segmentation network running on an Nvidia GTX 1050 (Notebook)
graphics card (GPU), and another 170 settings with the segmentation network
running on an Intel i7-7700HQ (CPU). Table 2 shows the results of fitting the
timing model to this data. The first column gives the range of values for inference
time across the parameter settings sampled. The second column gives the root
mean squared error (RMSE) for the predictive timing models.

Table 2: Range of times (ms) taken for neural network and CRF inference and
RMSE of the corresponding predictive timing model.

(a) CPU

Range RMSE

Network inference time 33.3–82.2 4.0
CRF inference time 108–586 32

(b) GPU

Range RMSE

Network inference time 91.8–627 7.2
CRF inference time 124–1013 50

The final stage of the tuning tool is to take a large number of samples from the
parameter space, and then exclude from consideration those that—according to
the timing model—would result in slower than real time performance. We then
select the Pareto front with respect to the semantic map accuracy and map
density, according to the accuracy and density models. The resulting Pareto
fronts in this case are shown in Figure 5.

6 Conclusions

ORB-SLAM2 provides good 3D model accuracy and real-time processing [1].
Following a ‘single view’ approach of overlaying a dense semantic map over the
sparse SLAM scene model (ORB-SLAM), we explore a method for automatically
tuning the parameters of the system such that it operates in real time while
maximizing prediction accuracy and map density.

We can fit models of the semantic map accuracy and density offline, and
efficiently fit an inference time model online on a given, new platform, or when
we have new implementations of the system components. Given a platform on
which ORB-SLAM2 runs in real time, this allows us to construct a 3D semantic
map, also in real time, while maximizing map accuracy and density. There is
room for the development of more sophisticated predictive accuracy and timing
models.
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Fig. 5: Pareto front (red crosses) of accuracy and density. Each point (red or
blue) is a setting of the parameters that allows the system to run in real time.
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A Appendix: Multi-View Semantic Map Construction
with Feature-Based SLAM

In this section we describe a multi-view approach to associating semantic pre-
dictions with the 3D scene model of ORB-SLAM2, by using the correspondence
between keypoints in different frames recorded by the SLAM system to combine
predictions. We show that this approach—similar to SemanticFusion [10]—has
drawbacks when used with sparse, feature-based SLAM systems.

We have modified ORB-SLAM2 to, for each keyframe, pass the (x, y) po-
sitions of keypoints to the code implementing the segmentation network. The
segmentation network performs inference on each keyframe, and passes the pre-
diction probability vector for each keypoint back to ORB-SLAM2. ORB-SLAM2
then computes an aggregate prediction for each MapPoint by combining the
predictions of the associated keypoints. This setup is illustrated in Figure 6.
The aggregate MapPoint prediction probabilities were computed by taking the
element-wise product of the keypoint prediction probabilities and then renormal-
izing. This is like a product of experts in ensemble machine learning methods [5].
Other aggregation methods were tried, such as taking the arithmetic mean or a
maximum vote, with similar results.

Fig. 6: Class label predictions from a deep network for semantic segmentation
are made based on multiple views of the same objects and then associated with
parts of the 3D model constructed by the SLAM system.

We report the accuracy of the segmentation network across all pixels and
across all keypoints in the test set, and the accuracy of the 3D semantic map
based on multi-view (aggregate) feature predictions. For each of these, we com-
pute the ‘overall accuracy’, which is the total proportion of correctly classified
pixels or MapPoints, and the ‘per-class accuracy’, which is the mean of the
proportion of correctly classified pixels or MapPoints for each class.

These results are shown in Table 3. The first three rows show the accuracies
computed for various settings of the parameters described in Section 5.1. The
first row gives the results for setting the parameters to maximize accuracy at the
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Table 3: Overall / per-class accuracy (%) of the semantic segmentation net-
work averaged across pixels and features, and the accuracies of the multiview-
constructed 3D semantic map. The ‘full network’ has width parameter w = 1.0
with CRF iterations I = 5. The ‘no CRF’ network is the same but with CRF
iterations I = 0. The third row is the same as the ‘full network’ but with a
width multiplier of w = 0.5. The final row results are for a modified version of
ORB-SLAM2 which uses more keyframes.

Accuracies (OP/PC) (%)
Per pixel Per feature Multiview

Full network 65.9 / 58.4 58.0 / 53.3 59.9 / 54.9
No CRF 64.9 / 57.7 53.4 / 51.1 55.9 / 53.1
w = 0.5 56.6 / 56.3 49.9 / 53.7 51.9 / 54.9
More frames 64.9 / 57.7 52.5 / 51.0 55.7 / 53.7

cost of increased computation; the full network is used, with width multiplier
w = 1.0, there is no cropping, rescaling, or frame skipping, and we apply I = 5
CRF iterations. The second row shows the results with the same parameters,
but without any CRF post-processing. For the third row the parameters are the
same as the first, but with the ‘half width’ network, with w = 0.5.

The multi-view per-feature predictions consistently give a two to three per-
centage point improvement in accuracy over the per-frame per-feature accuracy;
combining predictions does result in increased accuracy. This low improvement—
compared to the three to seven percentage point improvement seen from multi-
view predictions in SemanticFusion—seems to be due to low diversity amongst
predictions based on multiple views; in cases where the multiview predictions
are wrong, the corresponding pairwise single view predictions (i.e., the predic-
tions being combined) are the same in approximately 75% of cases, and the
KL-divergence of the pairwise prediction probabilities are low. These diversity
measures are shown in Table 4. This low diversity may in turn be due to ORB
features being invariant under only small changes in orientation and scale, so
that the multiple views that are combined are very similar.

Another feature of the results is that restricting predictions to only keypoints—
as we are required to in order to take advantage of ORB-SLAM2 to combine
predictions from multiple views—results in a reduction in accuracy by around
3-6 percentage points compared to the accuracy measured over all pixels; this
drop in accuracy more than compensates for the increase in accuracy that comes
from combining predictions from multiple views. This may be because ORB fea-
tures are likely to be found on corners and edges, and so may be likely to be
found on the boundary between objects. These points will be harder to classify,
and a lower accuracy will result if the segmentation edges do not align well with
object edges. Some evidence is lent to this interpretation by the fact that the
drop in accuracy when restricting predictions to keypoints is higher when no
CRF iterations are applied, as seen in Table 3, and that the use of the CRF
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drastically reduces the KL-divergence between predictions associated with the
same MapPoint, as shown in Table 4; the CRF, by aligning segmentation edges
with object edges, has removed a major source of uncorrelated errors between
predictions.

In the multiview setting, a surprisingly small number of observations/predictions
are associated with each MapPoint; the mean number of observations per Map-
Point is a little over four. It is possible to modify ORB-SLAM2 to create more
keyframes per frame. The final row of Tables 3 and 4 give the results for a
modified version of ORB-SLAM2, with a mean number of 7.0 observations per
MapPoint. This modified version still shows only a small improvement in accu-
racy for multiview predictions over single view predictions.

Table 4: Mean number of observations/predictions per MapPoint. The second
and third column show, in the case that the aggregate prediction for a MapPoint
is wrong, the pairwise probability that two predictions agree and the pairwise
KL-divergence between the prediction probabilities.

Obs. Agreement KL div.

With CRF 4.35 0.778 0.0375
Without CRF 4.34 0.754 0.337
More frames, no CRF 7.0 0.752 0.292

In this section, we have shown that the popular method of combining pre-
dictions from multiple views in conjunction with a SLAM system to build a
3D semantic map is not suitable in the sparse, feature-based SLAM setting.
Restricting predictions to ORB-SLAM2 keypoints, as is required for the multi-
view approach, reduces the semantic map accuracy by more than the increase in
accuracy from combining predictions from multiple views can compensate for,
suggesting that multiview semantic map construction using a sparse, feature-
based SLAM system is not viable if the features are likely to appear on object
boundaries, as will often be the case. It may be possible to do multiview pre-
diction with a feature-based SLAM system by modifying the features such that
they are more likely to appear in object interiors, but this is likely to affect
SLAM tracking performance.
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