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Abstract

This report describes a third year project in the computer science department
at the University of Manchester. In the course of the project, four programs
were created. The first explored the connection between tilings of the plane and
tile sets, and shows some tiling problems as general models of computation. It
did this by creating tile sets, tilings of which simulate Turing machine behaviour.
The purpose of the other programs was to explore the properties of different tile
sets, particularly aperiodicity. The second program constructs Wang domino
tilings, the third constructs Robinson tilings, and the fourth constructs Penrose
tilings.
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Chapter 1

Introduction

The main objective of this project is to explore the properties of tilings of the
plane, and their relationship to the computability of functions. All references
to tiling and tile sets in this report refer to the 2-dimensional model, unless
otherwise specified. Therefore, a tile is a 2-dimensional polygon. The only
restriction we place on this polygon is that is it not self-intersecting. A tile set
is a set of such 2-dimensional polygons, and we consider only finite tile sets. A
tile set can tile an area just in case the the tiles can be arranged in such a way
that they cover the area without overlapping. Not every tile in the set has to
be used and each tile can be used any number of times. A tile set is said to
be able to ‘tile the plane’ if there is an arrangement that can cover an infinite
area. Where we refer to higher and lower dimensions the terminology changes
in the obvious way; A set of 1-dimensional tiles may ‘tile the line’ and a set
of 3-dimensional tiles may ‘tile the volume’. Figure 1.1 shows a tile set and a
section of a tiling using only that set.

(a) A tile set (b) Section of a tiling produced from
that set

Figure 1.1: A periodic tiling
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The project is broadly split into two sections. The first section is concerned
with exploring the relationship between tiling problems and computability, by
creating tile sets that can simulate Turing machines. The goals are as follows:

• write a program that, when given the description of a Turing machine,
produces a set of tiles; and

• write a program that, when given a set of tiles and an input, tiles the
plane in such a way that it simulates the original Turing machine running
on that input.

A technical preliminaries chapter follows this one. It gives a formal definition
of a Turing machine. Chapter 4 explains precisely how a set of tiles can simulate
the behaviour of a Turing machine.

The second part of the project is exploratory; it is to explore the properties
of different types of tile sets. Therefore, when the project started, the goals
were not well defined. As the project progressed, these goals were defined as
follows:

• write a program that can automatically tile the plane with any set of Wang
dominoes;

• write a program that can automatically tile the plane with Robinson tiles;

• this program must also allow the user to manually build Robinson tilings;

• write a program that can automatically tile the plane with Penrose tiles;
and

• this program must also allow the user to manually build Penrose tilings.

These three sorts of tile sets - Wang dominoes, Robinson tiles, and Penrose
tiles - are described in detail in chapter 3, and some definitions are introduced
in the technical preliminaries chapter.

The programs produced for this project are of academic interest only, and
may be used as demonstration tools.

1.1 Report Overview

Chapter 2 introduces technical terms that are used throughout this report, and
includes a formal description of a Turing machine. Chapters 3 and 4 give the
essential background of aperiodic tile sets, computability, and the intersection
of the two. Chapter 5 covers the design of the tools created for this project. In
chapter 6 we will see some of the more interesting issues that arose during the
implementation phase of the project. Chapter 7 contains a critical evaluation of
the tools created and a comparison to other work. Chapter 8 briefly concludes
the report, and we will see how the project may be extended in future work as
well as some properties of tilings and computability that were not explored in
the project.

6



Chapter 2

Preliminaries

In the following we define technical terms that will be used throughout the
report. Technical terms related to tiling the plane and those related to com-
putability are treated separately.

2.1 Tiling

A tiling is periodic if it contains a finite area such that the tiling can be con-
structed by translations of this area. A tiling is non-periodic if there is no such
area. A tile set is aperiodic just in case it can construct only non-periodic tilings.
These definitions will be discussed in more detail, with examples, in chapter 3.
The following are tiling problems:

• the origin constrained domino problem: given a set of tiles, determine if it
is possible to construct a tiling of the plane from some initial configuration;

• the unconstrained domino problem: given a set of tiles, determine if it is
possible to construct a tiling of the plane;

• the periodic domino problem: given a set of tiles, determine if it is possible
to construct a periodic tiling of the plane.

The golden ratio is strongly related to Penrose tiles, which will be discussed
in detail. Two quantities are in the golden ratio if the ratio of the sum of the
quantities to the larger quantity is equal to the ratio of the larger quantity to
the smaller one. The symbol ϕ is used to represent the golden ratio throughout
this report.

2.2 Turing machines and computability

The following is a definition of the model of Turing machine used in this report.
The definition used is non-standard but is necessarily equivalent to any variation
of Turing machine.
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The Turing machine is, at all times, in a single state from a set of states Q.
It has a bi-infinite tape (that is, a tape that extends infinitely both to the left
and to the right) that is divided into discrete and contiguous cells. The machine
has a head, which can read, write, and move left or right. The tape contains
symbols from a finite alphabet Γ. Formally, the Turing machine is a 7-tuple

M = (Q,Σ,Γ, A, σ, s, T ),

where

• Q is a finite set of states;

• Σ is a finite set symbols that can be used to construct an input string;

• Γ is a finite set, the alphabet. Γ = (Σ+ ` +t) where ` is the left end-
marker symbol and t is the blank symbol;

• A is a finite set of actions. A = Γ + {L,R};

• σ : Q× Γ→ Q×A, the transition relation;

• s ∈ Q, the start state; and

• T ⊆ Q, the set of accepting states.

The transition relation σ defines the behaviour of the Turing machine and
gives a set of rules of the form r = (q0, s, q1, a) where q0, q1 ∈ Q, s ∈ Γ, and
a ∈ A. The rules should be read as ‘When in state q0 and reading symbol s,
go to state q1 and take action a’. If a ∈ Γ this is a write action, and a will
be written on to the tape. If a ∈ {L,R} this is a move action and the head
will move left or right. Some Turing machines allow a write action and a move
action to be taken simultaneously, but the description used here allows only one
or the other.

The machine will halt if it reaches an accepting state. The machine will halt
in a stuck configuration if it is in a state q0, reading a symbol s for which there
is no transition rule r = (q0, s, q1, a). The machine is deterministic if for every
combination of current state and symbol there is at most one transition rule and
is non-deterministic otherwise. An input string I is computable on a machine
M just in case M run on I will eventually reach an accepting state.

8



Chapter 3

Periodicity and Aperiodic
Tile Sets

Most of us understand the idea of a periodic tiling. Figure 3.1 shows two periodic
tilings. In each, a section is highlighted in red. They are periodic because the
infinite tiling consists of translated copies of this section. Non-periodic tilings,
on the other hand, are not so easy to visualise. Such a tiling covers an infinite
area with a finite set of tiles in such a way that it doesn’t fall in to repetition.

(a) A regular tiling of hexagons (b) A regular tiling of squares and oc-
tagons

Figure 3.1: Two periodic tilings, with the period highlighted in red

3.1 A One-Dimensional Example

To assist in understanding non-periodicity, we will first look at a one-dimensional
example, which relates tilings to real numbers. Figure 3.2 shows a set of 10 one-
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dimensional tiles, which map onto the digits 0-9. The tiles are coloured so that
we can distinguish them, and do not represent edge-matching rules. Each tiling
of the line with this tile set corresponds to exactly one infinite string of decimal
digits.

Figure 3.2: One-dimensional tiles mapped onto decimal digits

Recall that any rational number must ultimately reach a periodic sequence
of digits, and that an irrational number never falls into periodicity. For example
5/6 = 0.833̇ is not periodic, but it contains the infinite periodic sequence 333 . . .,
and so the corresponding tiling contains an infinite periodic sub-tiling. one-
dimensional tilings that correspond to irrational numbers will not contain an
infinite periodic tiling. Figure 3.3a shows sections of tilings corresponding to the
rational numbers 5/6 and 1/11 (in the diagrams, digits after the decimal point
appear to the right of the vertical bar). Figure 3.3b shows tilings corresponding
to the irrational numbers π and

√
2.

(a) 5/6 and 1/11 (b) π and
√

2

Figure 3.3: Real numbers and their corresponding one-dimensional tilings

The one-to-one correspondence between one-dimensional tilings and real
numbers gives an interesting property: since there are countably many ratio-
nal numbers and uncountably many irrational numbers, there are uncountably
many tilings of the line that do not contain periodic sub-tilings. This is true
for any tile set of size greater than one; unary encoding cannot represent real
numbers.
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3.2 Periodicity in Two Dimensions

Moving on to two dimensions, figure 3.4a shows a section of a spiral tiling, which
is constructed using a single tile. Another way to think about non-periodicity is
that a shifted copy of a tiling will never match the original exactly. Any tiling
which forms a spiral pattern cannot be constructed by translations of a finite
section[1], because it has a central point of rotational symmetry, and therefore
a shifted copy of the whole tiling can never match the original. However, the
same tile can be used to construct a periodic tiling, as shown in 3.4b.

(a) Non-periodic spiral (b) Periodic

Figure 3.4: Non-periodic and periodic tilings, using the same tile set[1]

A tile set is aperiodic just in case it can only form non-periodic tilings. For
a time it was not known if aperiodic tile sets could exist. Wang dominoes are
square tiles with coloured edges, first proposed by Hao Wang. They may not be
rotated or reflected and must be placed such that adjacent domino edges have
the same colour. Wang conjectured that any Wang domino set that can tile
the plane non-periodically can also tile the plane periodically. The conjecture
was disproved when an aperiodic set of 20,426 dominoes was found. Figure 3.5
shows a smaller aperiodic set of thirteen dominoes.

Figure 3.5: Aperiodic Wang domino set

As we shall see in chapter 4, it is possible to produce a set of Wang dominoes
that, given an initial configuration, will simulate the behaviour of a Turing
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machine. Since there are Turing machines that never halt and never fall into
periods of computation, this forms the proof that there are aperiodic Wang
domino sets.

The only general algorithm for tiling with any set of Wang dominoes involves
extensive unbounded backtracking. Tiling a finite area has exponential time
complexity, and there is no algorithm to determine if any given set of tiles can
tile the infinite plane; it is an undecidable problem. In the worst case, every
time we try to place a tile it will always be the last one we try. If we have a set
of 13 tiles, as in the figure above, there are 13mn ways of tiling a m × n area.
However, there are much better algorithms for tiling the plane with specific tile
sets, such as the Robinson tiles and the Penrose tiles.

3.3 The Robinson Tiles

The Robinson tiles are a set of 56 tiles. They consist of those seen in figure
3.6, as well as all possible rotations and reflections. The set can tile the plane
non-periodically but not periodically. The edge-matching rules are usually rep-
resented by ‘bumps’ and ‘humps’. Figure 3.7 shows the same tile set represented
using arrows. A symmetrical bump or hump becomes a single arrow. Asym-
metrical bumps or humps become double arrows, with the second arrow offset
from the centre. Arrows point inwards for bumps and outwards for humps.
The arrow representation ignores the shapes of the corners and will be used
throughout this report.

Figure 3.6: The Robinson tiles

Figure 3.7: Alternative representation of the Robinson Tiles

The first four tiles in figure 3.7 have one outward-pointing arrow, and will
be referred to as arm tiles. The last tile in the figure has four outward-pointing

12



arrows and will be referred to as a cross tile. The shape of the corners forces
cross tile to appear in every tiling and appear infinitely often.[6]

Figure 3.8 shows what is known as a 3-square and a 7-square. In general these
are named (2n − 1)-squares, for n ∈ N. Each of these structures is aperiodic,
and each (2n− 1)-square appears four times in each (2n+1− 1)-square, once for
each possible orientation.[6] The 7-square in the figure consists of four rotated
3-squares - shown in orange. The centre tile of the 7-square - shown in green
- can then have one of four rotations, which then determines which tiles fill in
the gaps - shown in purple.

(a) 3-square (b) 7-square

Figure 3.8: (2n − 1)-squares

Since cross tiles must appear in every tiling, and each (2n−1)-square uniquely
determines the location of a (2n+1 − 1)-square in the tiling, then for all n ∈ N
there is a (2n − 1)-square in the tiling. Since these structures are not periodic,
all Robinson tilings are non-periodic.

3.4 The Penrose Tiles

The Penrose tiles are an aperiodic set of tiles first investigated by Roger Pen-
rose. There are three variants. We will consider only the thick and thin rhomb
variant shown in figure 3.9. The thick rhomb has internal angles of 2π/5 rad
and 3π/5 rad. The thin rhomb has internal angles of π/5 rad and 4π/5 rad.
Edge matching rules are added to prevent periodic tiling. These are usually
represented with notches or colours, as shown in the figure. When displaying
full tilings, these edge restrictions are not usually displayed. The lengths of the
sides of the two tiles are equal.
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Figure 3.9: The thick and thin rhomb Penrose tiles

In general, it is undecidable whether a tile set is aperiodic; there is no al-
gorithm to determine if any tile set is aperiodic. However, we can prove that
some Penrose tilings are non-periodic. It is possible to produce Penrose tilings
that have fivefold rotational symmetry, as shown in figure 3.10. Only tilings
with two- four- and sixfold rotational symmetry can also have translational
symmetry[2]. Tilings with fivefold rotational symmetry must have exactly one
centre of rotation and so are non-periodic.

Further, we can prove that all Penrose tilings are non-periodic. As the size of
a finite Penrose tiling increases, the ratio of thick to thin rhombs asymptotically
approaches ϕ; in an infinite Penrose tiling, the thick and thin rhombs are in the
golden ratio. Since ϕ is irrational, the tiling cannot be periodic. If it were, the
tiling would consist of repetitions of a finite area. This finite area would have
some number of thick rhombs, m, and some number of thin rhombs, n. The
ratio of thick to thin rhombs would then be the rational number m/n[14].

14



Figure 3.10: A penrose tiling with fivefold rotational symmetry

Penrose tilings have the following properties:

• There are uncountably infinitely many Penrose tilings;

• Any finite region that appears in a tiling appears infinitely often in every
Penrose tiling. This property is clearly true of all periodic tilings, but is
non-trivial for a non-periodic tiling;

• Because of the previous point, if we took a finite area of a Penrose tiling
it would be impossible to determine where in the tiling we were looking
and which tiling we were looking at; and

• They are quasicrystals[2].

Penrose tilings have no translational symmetry but are highly ordered and
structured by a process known as inflation/deflation.

3.5 Inflation/Deflation

Both Robinson tilings and Penrose tilings can be generated by processes called
inflation and deflation. How this is done for each set of tiles will be described
further in chapter 5. For now, we will consider inflation and deflation in gen-
eral and see a one-dimensional example. Inflation and deflation are transition
functions from one tiling to another. That is, if we apply either process to an
infinite tiling of the plane we will get another, different tiling. It is of interest
in this project because both processes, when applied to a finite tiling, result in
a larger tiling. This means the processes can be used to tile an arbitrarily large
- but finite - area.
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Suppose we have a set of two one-dimensional tiles. One is red and repre-
sented by the label R. The other is blue and represented by the label B. We then
define a transition function that, when applied to an existing tiling, replaces ev-
ery instance of R with the string RBB and every instance of B with the string
BRR[11]. This is our inflation function. Starting with an R tile, figure 3.11
shows the result of applying the inflation rule one, two, and three times.

Figure 3.11: A single tile expanded to a 27-length tiling in 3 inflation steps

Each time we inflate, the length of the tiling increases by a factor of 3. We
can apply the inflation rule any number of times, and the result will always be
a larger, non-periodic tiling. As we shall see in chapter 5, a similar method can
be used to generate arbitrarily large Robinson and Penrose tilings.
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Chapter 4

Computability of Tile Sets

This chapter outlines how a set of tiles might simulate the behaviour of a Turing
machine, and therefore constitute a general model of computation. A tiling
that simulates a Turing machine is an instance of the origin constrained domino
problem. The Turing machine has an initial state and an initial configuration
of symbols on the tape. This means we already know which tiles belong on the
first row, and must try to continue the tiling from that row.

The idea is to take a Turing machine, as described in section 2.2, and trans-
form it into a set of tiles, where each tile represents one cell of the tape. The
initial row of the tiling represents the initial configuration of the Turing ma-
chine. The tiles produced must force subsequent rows to represent subsequent
configurations of the Turing machine; if a row represents the machine at time
t, then the row above it must represent the same machine at time t + 1. Once
we have this behaviour then, by induction, we can see that the tiling would
represent the - possibly infinite - computation of the machine.

4.1 The Set of Tiles

All of the tiles we have seen so far use colours, arrows, or bumps to represent
their edge matching rules. These representation methods are for clarity only,
and are all equivalent. The Turing machine simulation tiles shown in this section
use a combination of arrows and labels to represent edge matching rules. Arrows
must match such that they flow across edges. An edge with no arrow head must
be adjacent to another edge with no arrow head. Adjacent edges must also agree
on their labels. The tiles shown can not be reflected or rotated. It is the labels
at the top of the tiles that represent the current configuration of the machine.

A different set of tiles is needed to simulate each Turing machine. The sort
of tiles we need are shown in figures 4.1 to 4.5. The first tiles needed are the
initial configuration tiles, shown in figure 4.1. These are placed on the first row
of the tiling to represent the initial configuration of the machine, including the
machine’s input. The arrows on the left and right edges of these tiles (with no
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accompanying label) are to ensure that the initial configuration tiles can only
appear on the initial row; all other tiles that have an arrow on the left or right
edge have an accompanying label, and so can not appear on the same row as an
initial configuration tile. The s part of the label represents the current symbol
at that part of the tape. The q0 part of the label represents the initial state. The
initial row consists of an infinite number of these tiles extending to the right,
and possibly to the left as well. Figure 4.2 shows such an initial configuration,
starting in state q0 with input 101 followed by an infinite number of blank cells
extending to the right.

Figure 4.1: The initial configuration tiles

Figure 4.2: An initial configuration

The other tiles are constructed from the rules of the Turing machine. The
simplest tile - and most common one in any tiling - is the alphabet tile, shown in
figure 4.3. For each row, the alphabet tile is used for every cell of the tape except
for the one currently being read by the head of the machine. The function of
the alphabet tile is to take the symbol from the tile below and retransmit it to
the tile above. This clearly represents a cell of the tape not changing from one
time-step to the next. There must be one alphabet tile for each symbol of the
Turing machine.

Figure 4.3: The alphabet tile

The remaining tiles represent the actions that take place at the read/write
head of the machine. The possible actions are writing on to the tape, shown in

18



figure 4.4, and moving the head left or right, shown in 4.5. The write tile has a
state label q and a symbol label s at the bottom, and a state label qnext and a
symbol label s′ at the top. The behaviour of this type of tile should be read as
‘when in state q and reading symbol s, go to state qnext and write symbol s′.’
Each write tile directly corresponds to a Turing machine rule.

Figure 4.4: The ‘write’ action tile

The move actions involve moving the head to the left or the right. Each
action requires two tiles. Figure 4.5 shows only the tiles required for moving
the head to the right. The horizontal reflections of these tiles are also required.
The first tile in the figure is an action tile. It takes a state q and a symbol s0
from the tile below, then transmits the state qnext to the tile to the right and
retransmits the symbol, unaltered, to the tile above. The second tile is a merge
tile. It takes the state qnext from the left, then transmits it to the tile above,
along with whatever symbol it takes from the tile below. The effect of these two
tiles is to move the head one cell to the right and change the state, but leave the
symbols of the two cells unaltered. Each pair of tiles corresponds to a Turing
machine rule.

Figure 4.5: The ‘left’ and ‘right’ action tile

Every Turing machine description can be translated into a set tiles consisting
of initial configuration, alphabet, write, action, and merge tiles. We introduce a
blank tile, with no arrows or labels on any side, and use this tile to tile the half
of the plane below the initial configuration row. Since the tiling represents the
configuration of the machine over time, if the machine reaches a halting state
or a stuck configuration the tiling will become stuck. Since the tiling can only
be completed if the Turing machine will never halt, and the halting problem
is undecidable, this proves the undecidability of the origin constrained domino
problem[6]. It is also undecidable if the Turing machine, and therefore the tiling,
become periodic.
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Chapter 5

Design Overview

This chapter discusses the high-level design aspects of the project, including
design methodologies, justifications of any software and platforms used, and the
reasoning behind the main tiling algorithms. Implementation details are left
until chapter 6.

5.1 The Wang Domino Tiler

The purpose of the Wang domino tiler is to tile the plane with a given set
of Wang tiles. It follows a simple trial and error algorithm with unbounded
backtracking. The algorithm works as follows:

Choose a starting position;
loop

Place a tile;
if tile is in a legal position then

Go to the next position;
else
if all tiles have been tried then

Backtrack to the previous position;
else

Try a different tile;
end if

end if
end loop

The algorithm simply tries all tiles in all positions until it finds a configura-
tion that is legal. When it finds a legal configuration it extends the area. Once
a tile has been successfully placed, and the tiling is legal so far, the program
moves on to the next position. There are several ways to determine where the
next position is. The program must traverse the area in such a way that, given
infinite time, it would traverse at least one quadrant of the infinite plane, visiting
every tile location exactly once. Visiting one quadrant is sufficient because if it
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is possible to tile the top-right quarter of the infinite plane, then this tiling can
be translated an arbitrary amount to the bottom-left, tiling the whole plane.
Figure 5.1 shows two methods of traversing the infinite plane. The first method
places tiles in a spiral pattern extending outwards from some origin. The sec-
ond method is the same but tiles only one quadrant. The Wang domino tiler
uses the second method; as we shall see in chapter 6, this method was easier to
implement.

(a) A spiral method of
visiting every location
in turn

(b) Another method,
visiting locations in
only one quadrant

Figure 5.1: Methods of visiting every tile location in the infinite plane

If the tiler reaches a stuck configuration, that is a configuration where it is
impossible to place another tile, it traverses the plane using the same method
backwards until it finds a position where an alternative tile could have been
placed. The Wang domino tiler does not allow the user to manually build
tilings. This is because for a set of t tiles and an area m × n, there are tmn

possible ways of tiling the area. If, for example, only one of these configurations
is legal, manually tiling would be impractical.

5.2 The Robinson Tiler

The purpose of the Robinson tiler is to tile the plane with the Robinson tiles
automatically. It must also allow the user to manually interact with a tiling to
extend it.

5.2.1 Automatic tiling

The automatic tiling algorithm takes advantage of the following facts:

• each (2n−1)-square, including the single cross-tile, has one of four distinct
orientations;

• the orientation of a (2n − 1)-square uniquely determines the location of
the (2n+1 − 1)-square it is located within;
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• the (2n+1 − 1)-square consists of four (2n − 1)-squares, one in each orien-
tation, as well as a centre cross-tile. The remaining tiles can be determin-
istically filled in.

From these we can conceive of an inflation algorithm to tile arbitrarily large
areas. The second loop of the algorithm is illustrated in figures 5.2b to 5.2d.
The algorithm works in the following way:

Place a single cross-tile (1-square) in one of four orientations;
loop

Create three copies of the current (2n− 1)-square, in the three other orien-
tations, and position these three copies such that the centre cross-tiles of
them are face-to-face (figure 5.2b);
The orientation of the new (2n+1 − 1)-square is now determined by the
orientation of the centre cross-tile. Choose an orientation for this tile (figure
5.2c);
The remaining blank spaces are filled in by trial and error (figure 5.2d);

end loop

The last step of the loop, filling in the blank positions, is deterministic and
no backtracking is required.

(a) A 3-square (b) Creating four face-to-face
copies

(c) Deciding the orientation of
the centre cross-tile

(d) Deterministically filling in
the blanks

Figure 5.2: A single inflation step from a 3-square to a 7-square
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The inflation algorithm constructs relatively large tilings in few steps when
compared to a trial-and-error backtracking algorithm. For large tilings, each
iteration covers approximately four times the area of the previous iteration; the
algorithm has exponential space- and time-complexity. After n iterations, the
result is a non-periodic tiling that covers an area of 22n − 2n+1 + 1.

5.2.2 Manual tiling

The Robinson tiler program must allow the user to interact with tilings and
manually extend them. First, the user selects one of the five Robinson tiles and
an orientation. Then, he clicks where he wishes the tile to be placed. If the
tile placement is legal, then the tile will be added. If it is not a legal placement
then the user will be notified and the tile will not be added. A tile placement
is legal if and only if all four edges are either

A) adjacent to an agreeing edge; OR

B) adjacent to an empty position

5.3 The Penrose Tiler

The purpose of the Penrose tiler is to automatically tile the plane with Penrose
tiles, as well as allowing the user to manually construct tilings.

5.3.1 Automatic tiling

The algorithm for automatic tiling is based on a deflation method as described
in section 3.5. This particular deflation function is based on an observation of
the configurations that the tiles can appear in. For the purposes of deflation we
will split the tiles in half. Figure 5.3 shows the tiles and the way in which they
are split. The thick rhomb will be referred to as tiles B and B’. The thin rhomb
will be referred to as tiles A and A’.
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(a) The A and A’
tiles

(b) The B and B’ tiles

Figure 5.3: The thick and thin rhomb tiles, split in half

When we split the tiles in this way, we can see that in any tiling the half
tiles always fall in one of two patterns. These two patterns are shown in figure
5.4. Figure 5.6 shows a tiling, with thick lines showing how the tiles fall into
these two patterns. The first thing to notice is that, if the groups are considered
to be tiles, they also form a Penrose tiling. From this observation, De Bruijn[9]
formulated a method of constructing penrose tilings, which works as follows:

Start with a single tile;
loop
for all tiles in tiling do
if tile.type=A then

Replace tile with configuration in figure 5.5a;
else if tile.type=B then

Replace tile with configuration in figure 5.5b;
end if

end for
end loop

Also note that the deflation function does not respect tile boundaries; a
single tile, when deflated, becomes a selection of half tiles. This means that
when using this method to construct a tiling, some tiles will be left incomplete
around the edges, as can be seen around the edges of figure 5.6. After each
iteration the program must complete these edges. The following must appear
inside the main loop of the algorithm.

for all tiles in tiling do
if tile is incomplete then

complete the tile
end if

end for
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(a) Pattern 1,
forming a larger
A tile

(b) Pattern 2, forming a larger B tile

Figure 5.4: Half tiles must fall into one of these two patterns

(a) Deflation of
an A tile

(b) Deflation of a B tile

Figure 5.5: The thick and thin rhombs, deflated
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Figure 5.6: A tiling, overlaid with the outline of the tiling it was deflated from

At each iteration every A half-tile becomes two tiles, and every B half-tile
becomes three tiles. For large tilings the number of tiles increases by a factor
of approximately ϕ. Because the number of tiles increases exponentially in the
number of iterations, the algorithm clearly has exponential time- and space-
complexity. This method of tiling is not suitable for finding all possible tilings
of a given finite area, because at each iteration the area covered increases. The
process is deterministic and large tilings can be constructed relatively quickly
when compared to a trial-and-error backtracking tiler.

5.3.2 Manual tiling

The manual tiler allows the user to interact with an existing tiling. First the
user selects which of the two tiles to add, then he clicks where he wishes to add
it to the tiling. If the position is legal then the tile will be added. The user
should also be able to zoom and pan.

Unlike the Robinson tiles, the Penrose tiles do not appear in neat grids;
in order to determine where the user wants the tile to be placed, it must be
snapped to the nearest possible edge.

5.4 Tile Sets as Turing Machines

The Turing machine simulator has two parts. The first takes the description of
a Turing machine and produces a tile set. The second takes that tile set with
an input and produces a tiling. The structure of the program is shown in figure
5.7.
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Figure 5.7: Structure of the Turing machine simulator

5.4.1 The tile compiler

The tile compiler program takes the description of a Turing machine and pro-
duces a set of tiles. The description takes consists of a set of symbols, a start
state, a set of halting states, a set of actions, and a list of rules. Examples are
shown in tables 5.1 and 5.2. The example Turing machine takes an input of
zeros and ones and flips them. Blank symbols are unchanged.

Initial State 5
Halting States {8}
Symbols S={0, 1 ,BLANK}
Actions {�, �, S}

Table 5.1: The first part of the Turing machine description
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State Symbol State’ Action
5 0 7 1
7 1 5 �
5 1 10 0
10 0 5 �
5 BLANK 8 BLANK

Table 5.2: The rest of the Turing machine description, a list of rules

The tiles are constructed as described in section 4.1. The set of symbols from
table 5.1 is used to construct a set of alphabet tiles and initial configuration tiles.
There must be one alphabet tile for each symbol, with the symbol on the bottom
and top edge, in order to transmit each symbol unchanged. There must be one
initial configuration tile for each symbol, with the symbol on the top edge,
representing the input of the Turing machine. There must also be one initial
configuration tile for each symbol that also carries the starting state, both on
the top edge, to represent the head of the machine at initialization along with
the input at that cell. The initial configuration tiles have special symbols on the
left and right edges. This is to ensure that only initial configuration tiles can
appear on the first row and that those tiles cannot appear on any other row. It
also ensures that only one cell in the initial row can carry a state with it.

Then, the rules in table 5.2 are used to construct tiles. Any rule whose
action is to write onto the tape becomes an action tile, where the current state
and current symbol are represented on the bottom edge of the tile and the
next state and next symbol are represented on the top edge of the tile. A rule
that moves the head to the left or the right becomes two tiles. The first tile
has the current state and current symbol represented on the bottom edge, the
unchanged symbol represented on the top edge, and the next state represented
on the left or right edge. The second tile, which represents the position that the
head of the machine is moving to, has the next state represented on its left or
right edge, that cell’s current symbol represented on its bottom edge, and the
next state and the unchanged symbol represented on its top edge. This second
tile is called a merge tile. Since the cell that the head is moving to could contain
any of the symbols, for every rule that moves the head we must construct one
merge tile for every possible symbol. The construction of merge tiles can lead
to duplicates, which must be removed. The result of a move action tile and its
corresponding merge tile is to move the head of the Turing machine from one
cell to another, change the current state, and leave the symbols of both cells
unchanged.

To illustrate, the tiles produced from the example Turing machine described
by tables 5.1 and 5.2 are shown in figure 5.8. ‘1’ and ‘0’ symbols are represented
by pointed humps or bumps, and the blank symbol is represented by a square
bump. States are represented by a binary representation of the state number.
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(a) Initial configuration tiles for start
state

(b) The other initial configuration
tiles

(c) Alphabet tiles, for retransmitting
symbols

(d) Write tiles, for changing symbols

(e) Move tiles, for sending the state
left or right

(f) Merge tiles, for receiving the state
from a move tile

Figure 5.8: The tiles generated from the example Turing machine

5.4.2 The tiler

The purpose of the tiler part of the program is to take the tiles produced by
the tile compiler, along with an input, and use them to construct an initial row
of the tiling. The initial row represents the state of the initial configuration of
the Turing machine. The program then tries to tile the plane above this initial
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row. Conceptually, the rows are infinite in length.
The tiling algorithm works in much the same way as the näıve Wang domino

tiler. Since the tiles are square there is a discrete grid of tile positions, each of
which must be filled with a tile. The tiler must visit each of these positions in
turn, trying to tile the plane in a way such that adjacent tiles have matching
edges. It keeps a decision stack and if it reaches a stuck configuration, and it has
tried all possible tiles in the current position, it will begin to backtrack. Like the
Wang domino tiler, it doesn’t matter how the algorithm traverses the plane; as
long as every position is visited exactly once, the algorithm will produce a tiling,
if possible. However, as each row represents the configuration of the machine
at a given time step, and each configuration of the machine is determined by
the row before, an obvious solution is for the algorithm to traverse the plane by
completing each row in turn, as shown in figure 5.9.

Figure 5.9: The Turing machine simulator tiles the plane one row at a time

The row highlighted in red represents the initial row of the tiling, which is
already constructed before the traversal begins. The rows are infinite in length.
Clearly, the program can only tile finite lengths. It must decide how much of
each row to tile before it moves on to the next row. Conveniently, most of the
tiling will consist of the alphabet sort of tiles seen in figure 5.8c. The only
place the other sorts of tiles will appear - and trial-and-error tiling must be
done - is where the head of the Turing machine is. A solution to the traversal
problem is to decide on a finite length of row to tile, and if the head of the
machine approaches the edge of the tiling area then the tiling can be extended
horizontally.

If the original Turing machine is deterministic then the tiling algorithm will
also be deterministic. For a deterministic tiling there is only one situation in
which the algorithm will have to backtrack, and when it does it only needs to
backtrack by one position. The algorithm may have to backtrack when the head
of the Turing machine moves left. Where this happens a move tile of the sort
shown in figure 5.8e is required, and a merge tile as shown in figure 5.8f must
be placed to the left of it. However, the algorithm may have already placed an
alphabet tile in that position. Because the backtracking is limited, rather the
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extensive backtracking employed by the Wang domino tiler, the time complexity
of this algorithm is much lower.

While the tile compiler part of this program needs information about the
input Turing machine, the tiler part is mostly a generic tiler, working simi-
larly to the Wang domino tiler; it is given the required tile set and it needs
almost no information about the machine it is simulating. However, the tiler
does need to know the set of accepting halting states of the machine. Without
this information, the tiling algorithm would be unable to distinguish between a
stuck configuration and an accepting configuration; the machine halts after an
accepting configuration, so the tiling can not be completed. In this situation,
the algorithm would backtrack until it had unraveled the whole tiling.

5.5 Platform, Software, and Design Methodol-
ogy

The programs written for this project were written in C++, with the exception
of the Penrose tiler which was written in C. I chose this programming language
for the following reasons:

• memory management and dynamic memory allocation are relatively sim-
ple;

• I already had experience with the language;

• it is a cross-platform programming language;

• it interfaces with implementations of OpenGL, the cross-platform com-
puter graphics API specification, easily; and

• it allows object-oriented programming.

I chose to use OpenGL because I was already familiar with the specification.
OpenGL allows efficient rendering of 2D and 3D graphics. The tiling problems
are inherently visual, and it is important for the programs to be able to quickly
render thousands of tiles.

I chose to use an object-oriented language because, while designing the pro-
grams, the most obvious way to think about the tiles was as objects with their
own attributes, properties and actions.

Java is a viable alternative to C++. Using Java would have made mem-
ory management easier, as it is done automatically. However, C++ generally
performs the same tasks more quickly and performance was an important con-
sideration. I also had more experience with C++, and had never used Java in
conjunction with an implementation of OpenGL.

The Wang domino tiler and the Turing machine simulator make extensive use
of an unbounded backtracking algorithm. Performance may have been improved
by using Prolog for these parts. However, I had no experience with interfacing
Prolog with C++ and chose not to.
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The programs were designed using an iterative design methodology. Devel-
opment began with the design of the essential features, followed by implementa-
tion, testing, and debugging. This process was then repeated for any additional
features. The design phase was also revisited in order to improve the efficiency
of the algorithms.

Where appropriate, such as with the Turing machine simulator, a bottom-up
design methodology was also used; the two programs were written and tested
separately before being interfaced together. Implementation of the GUI of each
tiler program did not start until the implementation and testing of the program
was finished.
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Chapter 6

Implementation and Testing

This chapter describes the most important and most interesting implementation
issues. It describes exactly how some of the algorithms were implemented and
how the designs had to change because of practical considerations.

6.1 The Wang Domino Tiler

Wang dominoes are distinguished by the colours of their edges. The program
stores tiles as objects, with each edge being represented by three integers, for
red, green, and blue. The Wang dominoes are square, so they always appear in
neat grids. This means that before we start tiling, while we do not know which
tiles appear where, we do know the positions of the tiles. For this reason, the
Wang Domino tiler keeps a two-dimensional data structure of tile objects. The
indices of the tile in the data structure correspond to the tiles position in the
plane. For example, the tile held at [0][5] in the data structure appears in the
same column as the origin tile, and 5 units to the right of it. The tiler has a
‘blank tile’ object, which is a tile with special edge labels. The data structure
is initialised as being filled with these blank tiles. The program stores the tiles
in a two-dimensional vector (or, more accurately, a vector of vectors of tiles).
The vectors are initialised at a certain length and are resized when they start to
become full. I chose to use vectors because they can be extended from the back
end in constant time. Extending vectors from the front end involves pushing
objects in the vector along and is done in linear time. However, the program
only tries to tile the up-right quadrant of the plane, and the tiling data structure
will never have to be extended to the left or bottom.

The program traverses its data structure replacing the blank tiles with those
from its tile set. The tile set is read in at runtime from a text file. The traversal
method was outlined in the design chapter. As each tile is placed, the program
checks if it ‘agrees’ with the surrounding tiles. A tile’s agreement with its
neighbours is decided by the following algorithm:

for all adjacent tiles do
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if adjacent tile is not blank AND edges disagree then
return FALSE;

end if
end for
return TRUE;

In other words, the tile being considered must have matching edges with
all its adjacent tiles that are not blank. When a valid placement is made, the
program moves on to the next position. When an invalid placement is made,
the program tries putting another tile in its place. If all choices have been
exhausted for that position, the tiling backtracks to the first previous position
where there is another choice that could have been made. If ever the program
backtracks to the origin and all choices are exhausted in that position, then a
tiling cannot be constructed. In order to have this backtracking behaviour, the
program keeps a stack of decisions. A ‘decision’ consists of the position at which
the tile was placed and the index of the tile that was placed there. When a new
decision is made it is pushed onto the stack. When the program backtracks
by one position, a decision is popped off the stack, and the index of the tile is
incremented (the next tile is tried).

6.2 The Robinson Tiler

The most challenging part of the Robinson tiler to implement was the inflation
method shown in figure 5.3. The first step of the inflation is to make three copies
of the current tiling. There are two methods of deciding where copied tiles
should go, one involving reflection and the other involving rotation. Whichever
is used, the individual copied tiles must then be rotated or reflected into the
correct orientation. Using the rotation method, one copy is rotated by 90◦, one
is rotated by 180◦, and one is rotated by 270◦. Using the reflection method, one
copy is reflected in the x-axis, one is reflected in the y-axis, and one is reflected
in both axes.

Figure 6.1a shows the method of placing new tiles based on reflections of the
current tiling. The lines of symmetry are shown in blue and reflections in the
x-axis are indicated with arrows.. Figure 6.1b shows the method of placing new
tiles based on rotations of the current tiling. The centre of rotation is shown
in blue, and some of the rotations are shown. I decided to use the rotation
method. Whichever method is used, tiles are simply copied over to the new
positions. The copied tiles will be in the wrong orientation and must also be
rotated or reflected. There are two ways of doing this; either the edge labels
can be manipulated to change the orientation of the model of the tile, or the
program can keep track of how many times the tile has been rotated, and have
OpenGL rotate the rendering of the tile. I opted for the latter method, and the
tiles are rotated into the correct orientation because OpenGL does not have a
reflect function.
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(a) Reflection method (b) Rotation method

Figure 6.1: Two methods of creating copies of Robinson (2n − 1)-squares

6.3 The Penrose Tiler

6.3.1 Automatic tiling

The automatic Penrose tiler algorithm involves replacing every half-tile with a
configuration of tiles. The program must deal with half-tiles as objects. Each
half tile has a number of properties, including whether it is a thin or thick
rhombus, which half of the rhombus it is, and the co-ordinates of the three
vertices. The vertices are ordered consistently, as shown in figure 6.2.

(a) A (b) A’

(c) B (d) B’

Figure 6.2: The four half-tiles, and the ordering of their vertices
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The half-tiles deflate as shown in figure 5.5. For example, a B tile (which we
label B original in the algorithm below) becomes an A tile, a B tile, and a B’
tile. We can see from the figure how to determine the vertices of the new tiles,
and the following outlines the algorithm for doing so:

for all B half-tiles in tiling do
initialize A, B, B’;
A.vertex1 := B original.vertex1;
A.vertex2 := point ϕ/(ϕ+1) along B original.vertex1→ B original.vertex3
length;
A.vertex3 := point ϕ/(ϕ+1) along B original.vertex1→ B original.vertex2
length;
B.vertex1 := B original.vertex3;
B.vertex2 := A.vertex2;
B.vertex3 := B original.vertex1;
B’.vertex1 := A.vertex2;
B’.vertex2 := A.vertex3;
B’.vertex3 := B original.vertex1;
Remove B original from data structure;
Add A, B, B’ to data structure;

end for

There is another, similar algorithm for deflating A type tiles. Each tile in
turn is removed from the the tile data structure, and the tiles produced from the
deflation are added to it. The data structure needed to be capable of dynamic
memory allocation. The other tilers used square tiles, and so it made sense to
use a two-dimensional array where the indices of the array indicate the position
of the tile. The Penrose tiles do not have this property, so it stores the half-tiles
in a dynamically-sized one-dimensional array.

This deflation method introduces incomplete tiles; around the edges, some
half-tiles are placed without their corresponding half-tile, as shown in figure 6.3.
These incomplete tiles introduce a problem for manual interaction; the user will
not be able to extend the tiling if the edge-tiles are not whole. The following
outlines an algorithm for completing these unfinished tiles:

for all tiles (a) in tiling do
for all tiles (b) in tiling do

Check if tile a and tile b share vertices 1 and 3;
end for
if no tile shares vertices 1 and 3 with tile a then

Introduce a new tile that completes tile a;
end if

end for

This algorithm is applied to every generation of deflation. The new tile that
is introduced shares vertices 1 and 3 with the tile that it completes. Figure
6.4 shows the same generations of deflation as figure 6.3, with this algorithm
applied. In the figure, tile halves have been shaded so the original structure can
be seen.
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(a) Generation 2 (b) Generation 3

Figure 6.3: Generations of Penrose deflation, with incomplete tiles around the
edges

(a) Generation 2 (b) Generation 3

Figure 6.4: Generations of Penrose deflation, with complete tiles around the
edges

6.3.2 Manual tiler

The manual part of the tiler works by allowing the user to drag tiles - which
actually consist of two half-tile objects - and drop them into place. In order for
the user to be able to interact with the tiling in this way, there must be a way
for the program to determine exactly where the user wants the tile to be placed.
Since the tiles don’t appear in a neat square grid this is a less trivial problem
than it is for the Robinson tiler. When the user drags a tile to a location and
clicks, the program compares the positions of the four edges of that tile to the
positions of the four edges of every tile currently in the tiling. Whichever edge
in the tiling is closest to an edge of the manually placed tile, while being within
a certain threshold distance, the tile will be snapped to that position. Then,
if the placement is legal - that is, if the edges match - then the tile will be
added. The closest edge is the edge with the lowest sum of squares of the x
and y distances between vertices. Figure 6.5 illustrates this process. The yellow
tile represents a manually placed tile. The red circles represent the distance
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thresholds. If there are no vertices within the threshold then the tile will not
snap. The red arrows show which position the tile will snap to. The algorithm
also checks if the user is trying to place a tile in a location where a tile already
exists, by checking if there are any tiles that share all four vertices. Duplicate
tiles will not be added.

Figure 6.5: A manually placed Penrose tile snapping into position

6.4 The Turing Machine Simulator

6.4.1 Tile compiler

This part of the program takes a description of a Turing machine and converts
it to a set of tiles. The first consideration is how the description is stored. The
program reads in the description from a text file that contains:

• the start state;

• the set of accepting states; and

• the set of rules.

The tiles that are produced are as shown in figure 5.8. The program stores
these tiles as objects with four labels vectors, each representing an edge. Each
edge label can contain a symbol, a state, or a special symbol - such as the initial
configuration tiles have on their sides. Each is stored as an integer. While the
number of symbols and special symbols is defined in the start of the description
file, the number of states can be arbitrarily increased. Since some of the tiles
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can be thought of as transmitting states (such as the ‘move’ tiles), and some
can be thought of as receiving states (such as the ‘merge’ tiles), there must be a
distinction made between the two. In the program, this is done by making the
receiving edge label the complement of the transmitting edge label. For example,
if a move tile transmits a state number 5 to the right, the corresponding merge
tile will have the receiving label -5. Two edges agree not if their edge labels are
the same, but if their sum is 0. Figure 6.6 shows a sample tiling, with the state
parts of the edges labelled.

Figure 6.6: A partially labelled tiling

The states are stored in the text file in decimal form, but displayed in a
binary representation. An outward bump represents a 1, and an inward bump
represents a 0. Figure 6.7 shows several state numbers represented.

(a) 3 (b)
4

(c)
16

Figure 6.7: Binary representations of three states

6.4.2 Tiler

The tiler takes this tile set and tries to produce a tiling by trial and error. It
tries all tiles in all positions. The tiler only moves on to the next position if
all tiles so far are legally placed. Decisions are pushed onto a decision stack.
If the program has to backtrack, then previous decisions are popped off the
decision stack. If all possible combinations are exhausted then it is not possible
to construct a tiling.

Since the tiles are roughly square, tilings take the form of a grid. The most
appropriate data structure for storing tilings is a two-dimensional vector - ac-
tually a vector of vectors of tiles, as figure 6.8 represents. In the figure, the
vertical columns represent vectors of tiles. The lower, horizontal row repre-
sent the vector of vectors. The blue arrows represent the extendability of the
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structure. Note that extending the structure vertically involves extending each
of the inner vectors, and extending the structure horizontally involves adding
extra vectors onto the right. The indices of the vectors represent the physical
location of the tiles, so the tile objects do not need to store location information,
unlike the Penrose tiles. Vectors were chosen instead of arrays because they au-
tomatically resize if required when objects are pushed on to them. The vectors
are set to some initial size. The vertical vectors must resize after some number
of Turing machine computation steps. The horizontal vector must only resize
when the head of the Turing machine approaches the edge of the tiling. The
Turing machine cannot extend horizontally to the left - and so cannot represent
a Turing machine with bi-infinite tape - because of the higher time complexity
of extending a vector from the beginning, which would involve shifting all the
other items in the vector along.

Figure 6.8: A representaion of a two-dimensional vector
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Chapter 7

Evaluation of the Tools

In this chapter I will critically evaluate the programs produced for the project.
I will do this by comparing the original purpose with the actual behaviour
of each program. Known bugs in the programs will be discussed, along with
possible solutions. This chapter also discusses features that would be added to
the programs if there were more time available.

7.1 The Wang Domino Tiler

The Wang domino problem is conceptually very simple, and we can see that
the tiling program models it correctly; it attempts all possible combinations of
tile positions, trying to tile as large an area as possible while obeying the edge
matching rules. An infinite run of the program on some tile set would backtrack
to the origin with all options exhausted just when the tile set can not tile the
plane.

However, due to the extremely large search space of possible configurations,
even tiling a small area can take a long time. Figures 7.1a and 7.1b show the
program tiling the plane using the tile set introduced in the chapter 5. The set
can tile the plane, but only non-periodically. The first figure shows a 12x12 tiling
produced after just a few seconds, and the second figure shows the configuration
of the tiling several minutes later. Note that the program has been unable to
extend the tiling beyond the 12x12 area. This is because for a 12x12 area
there are 2.557× 10160 possible configurations, while for a 13x13 area there are
1.805× 10188 possible configurations, and it is possible that only a few of them
are valid.
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(a) Tiling after several seconds (b) Tiling after several minutes

Figure 7.1: Two valid configurations of a 12x12 area, using the same tile set

It would be useful if the Wang tiler program gave the user the option to
store the current configuration of the tiling and the current decision stack in a
text file. Then, the program could load that configuration later and continue
the tiling. Having the option to save the current configuration would also be
useful for the Turing machine simulator program. It would also be useful if the
Wang tiler program could check for periodicity.

7.2 The Robinson Tiler

The Robinson tiler, while it meets the requirements, would benefit from a more
intuitive user interface. When manually interacting, the user selects which tile
they would like to place by dragging and dropping it from a bar at the top of
the screen. A better interface might make use of a mouse scroll wheel, to scroll
through the available tiles. Because the inflation process is non-deterministic
- there are four possible directions a Robinson tiling can be inflated in - the
user must decide the direction of inflation. It would be useful if the tiling
program gave the user the option to undo previous inflation steps and change
the orientation.

7.3 The Penrose Tiler

The automatic Penrose tiler works in two stages. First, it deflates every tile,
increasing the size of the tiling. Second, it finds incomplete half-tiles, which
are around the edge, and completes them. Figures 6.3 and 6.4 show two finite
tilings before and after this second step is applied. This step is necessary to allow
the user to manually add tiles, but it greatly increases the time complexity of
the program. Table 7.1 shows a comparison of how long the program took to
complete each iteration with and without performing the edge completion step.
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The figures in the table are averaged from three runs of the program. Without
edge completion, each iteration takes approximately ϕ2 times as long as the
previous iteration. This is because the number of tiles increases by the same
factor at each iteration; the time complexity of the deflation algorithm is O(n) in
the number of tiles. With edge completion, each iteration takes approximately
ϕ4 times as long to complete as the previous iteration. Again, since the number
of tiles increases by a factor of ϕ2 every time the algorithm is applied, the
time complexity of the deflation algorithm with edge completion is O(n2) in the
number of tiles.

Iteration Deflation only, time (ms) Deflation and edge completion, time (ms)
1 0 0
2 0 0
3 0 0
4 0 2
5 0 20
6 1 150
7 2 1095
8 4 7871
9 12 57844
10 32 412698
11 93 -
12 160 -
13 374 -
14 969 -

Table 7.1: Comparison of time taken to complete each iteration with edge com-
pletion turned off and on

Note that by the 10th iteration the deflation algorithm alone takes 32 mil-
liseconds, whereas the deflation algorithm followed by the edge completion al-
gorithm takes almost 7 minutes. The reason the edge completion step takes
so long is that it compares every half-tile to every other half-tile, and checks if
they form a whole tile together. The time complexity of the algorithm could be
greatly reduced by changing the data structure used to store the tiling. The pro-
gram currently stores the tiles in a one-dimensional array. If this were changed
to a data structure where an element’s position in the structure were indicative
of its position in the tiling, then the edge completion algorithm could be made
to run much more quickly. This is because two half-tiles can only form a whole
tile if they are adjacent to one another, and each Penrose tile can only ever be
adjacent to at most four other tiles. If the algorithm could infer which tiles are
spatially close to each other, this would essentially reduce the time complexity
of edge completion to O(n) in the number of tiles; for n tiles, the algorithm
would perform 4n comparisons, not n2. One data structure that could be used
is a kd-tree, where each split in the tree partitions the 2D space, and only the
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leaf nodes would hold tile objects. The edge-matching algorithm would then
traverse only the parts of the kd-tree that are spatially close to the starting tile.

7.4 The Tile Compiler

If the tile representing the head of the Turing machine moves towards the right
of the tiling area, then the tiling must be extended horizontally. To do so is
simple; The vectors must be resized, and the new area must be filled in with
blank alphabet tiles, as described in chapter 5. However, the program keeps
a decision stack, to keep track of which configurations have been tried so far.
The stack has one decision entry for every tile currently in the tiling. When
the area is extended horizontally, and alphabet tiles are used to fill in the new
area, the decision stack must be modified to reflect the change. Elements in the
stack can only be accessed from the end, and new entries cannot be placed in
the middle, so restructuring it involves popping every entry off the stack, and
then reconstructing it while inserting extra decision entries. Figures 7.2a and
7.2b represent a decision stack and a corresponding 3x3 tiling area. Each entry
in the decision stack stores the tile currently placed at the position in the tiling
with the same number. Figures 7.2c and 7.2d represent the same tiling, now
3x4, after being horizontally resized. It also shows the corresponding decision
stack, and how it must be reconstructed.

(a) 3x3 tiling (b) (c) 3x4 tiling, resized (d)

Figure 7.2: A tiling and its decision stack, before and after horizontal resizing

Because the decision stack has to be rebuilt every time, the time complexity
of the horizontal resize algorithm is linear in the number of tiles in the tiling.
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A linked list would be a more appropriate data structure; push and pop actions
can be added to make it function like a stack when required, and when the tiling
is resized new decision entries can be added in the middle by changing the next
and previous pointers of the appropriate nodes, as shown in figure 7.3. This
would still involve visiting every element in the data structure every time there
is a horizontal resize, but would be less computationally expensive than having
to deconstruct and reconstruct the stack.

Figure 7.3: A linked list of decisions
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Chapter 8

Summary and Future Work

Over the course of this report we have seen: a program that attempts to tile the
plane with a given set of Wang dominoes, programs that can construct Robinson
and Penrose tilings, and a program that, when given the description of a Turing
machine, can produce tiles a set of tiles, tilings of which simulate the behaviour
of that Turing machine.

The remainder of this chapter outlines possible extensions of the programs.
All of the methods used so far to generate tilings do so by trial and error or
by using a deflation or inflation function. Each method starts with a tile set,
and incrementally covers a larger and larger finite area with them. Using such
methods, no matter how large a finite area is covered, we can’t say whether
the tiling can be extended to fill the infinite plane, or whether it can do so
non-periodically. This section outlines a method by which we can, with a small
set of parameters, describe an infinite tiling in its entirety[4]. Given more time,
producing a program that uses this method would have been the next logical
step of the project.

The method involves taking an n-dimensional orthogonal projection, or shad-
ow, of an integer lattice of more than n dimensions. First we will look at a 1D
example. We start with a 2D plane, and consider all points on the plane with
integer x and y coordinates. Joining these points gives us a two dimensional
integer lattice, which consists of a grid of squares. We then choose any line that
lies in this plane, and call it E. We then consider the area around line E, such
that the area would be just wide enough to contain one (unrotated) square from
the integer lattice. We name this area C. Selecting all edges that lie entirely
within area C gives us a ‘staircase’ pattern through the plane. This is shown in
figure 8.1. The edges highlighted in blue are those that fall within the yellow
area C.
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Figure 8.1: A line intersecting a 2D lattice

If we orthogonally project the edges in this staircase onto the original line
E, the result is a tiling of the 1D line. Note that the structure of the tiling
depends on the angle of the line E. With this method, instead of starting with
a set of tiles and attempting to form a tiling with them, we are guaranteed to
form a tiling and can ensure we get a non-periodic tiling. If the angle of the line
E is rational then the ratio of horizontal lines to vertical lines crossed by the
infinite line will also be rational, and the tiling will be periodic. If the angle of
E is irrational, then the tiling will be non-periodic.

This idea can be extended to produce 2D tilings in the following way. We
consider an integer lattice with more than two dimensions. For example, a 3D
lattice consists of the edges joining points with integer x, y and z values in an
infinite volume. This lattice would form unit cubes. We then take any plane
E in the volume, and consider the volume C around the plane such that one
(unrotated) cube from the lattice could fit inside the volume. If we select all
edges of the lattice that fall wholly within C, and orthogonally project them
onto E, the result is a two dimensional tiling. The tiling can be periodic or
non-periodic depending on the orientation of the original plane.

The method can also be used to produce Penrose tilings. It has been shown
that all Penrose tilings are 2D projections of a 5D integer lattice[8]. The lattice
consists of edges joining integer points in five dimensional space. The lattice
forms a grid of penteracts, which are the 5D analog of the cube. The method
works as above; we take a plane E, and consider the 5D space C around the
plane such that one of the penteracts could fit within it. The orientation of
the plane E can be chosen such that the edges that fall within the space C,
when projected onto E, form a Penrose tiling. The method can also be used to
produce 3D tilings, or tilings in higher dimensions.

It would have been interesting to see if it is possible to simulate Turing
machines using Penrose tiles, or a modification of Penrose tiles. It is not obvious
if this is possible. In this project, the tiles that have been used so far to simulate
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the behaviour of Turing machines have been roughly square in shape, with the
particular shape of the edges corresponding to state and symbol information.
Because of the square shape of the tiles, they fall into rows and columns, where
each column represents a particular cell on the tape of the machine and each
row represents the configuration of the machine at a single time step. The
Penrose tiles are not square, and so do not have these properties. The tiles have
particular edge matching rules to ensure they can only form non-periodic tiles.
It may be possible to produce a modified set of Penrose tiles corresponding to
a given Turing machine, such that they can produce a non-periodic tiling just
when the machine never halts or falls into periods of computation, produces a
periodic tiling just when the machine does fall into periods of computation, or
fails to produce a tiling just when the machine halts. Had I had more time with
this project, I would have determined whether it was possible to produce such
a tile set.
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Appendix A

Project Plan

Figure A.1: Project Gantt chart
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Appendix B

Demonstrations

B.1 The Penrose Tiler

Figure B.1 shows a Penrose tiling produced by 8 deflation steps of an A-type
tile, with the edge completion algorithm turned on.

Figure B.1: A Penrose tiling
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B.2 The Turing Machine Simulator

The following is a description of a simple Turing machine that takes an input
of zeroes and ones and determines if the input string is a palindrome.

Initial State 0
Halting States {16, 17}
Symbols S={0, 1 ,BLANK, `}
Actions {�, �, S}

Table B.1: The first part of the Turing machine description
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State Symbol State’ Action
0 1 BLANK `
0 BLANK 1 `
1 ` 2 �
2 1 3 BLANK
2 0 4 BLANK
2 BLANK 8 �
3 BLANK 15 �
15 1 15 �
15 0 15 �
15 BLANK 5 �
4 BLANK 6 �
6 1 6 �
6 0 6 �
6 BLANK 7 �
5 1 11 BLANK
5 0 12 BLANK
5 BLANK 8 �
11 BLANK 13 �
12 BLANK 14 �
7 1 12 BLANK
7 0 11 BLANK
7 BLANK 8 �
8 BLANK 8 �
8 ` 9 �
9 BLANK 17 1
13 1 13 �
13 0 13 �
13 BLANK 2 �
14 1 14 �
14 0 14 �
14 BLANK 14 �
14 ` 10 �
10 BLANK 16 0

Table B.2: The rest of the Turing machine description, a list of rules

The Turing machine simulator, when given this description, produced the
following set of tiles:
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Figure B.2: 100 palindrome checker tiles

The tiler program is then given the above tile set and the input 10101, which
is a palindrome. The tiler reaches a stuck configuration, a section of which is
shown in figure B.3. In the figure, the last line of the tiling - and thus the
final configuration of the Turing machine - is highlighted in green. In the last
step, the head of the machine is in state 16, which is an accepting state of the
machine, and the symbol at the head of the machine is 1, indicating that the
input was a palindrome.
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Figure B.3: A section of the tiling produced on input 10101

The tiler program is then given the same tile set and the input 10010, which
is not a palindrome. The tiler reaches a stuck configuration, a section of which
is shown in figure B.4. In the last step, the head of the machine is in state 17,
which is an accepting state of the machine, and the symbol at the head of the
machine is 0, indicating that the input was not a palindrome.
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Figure B.4: A section of the tiling produced on input 10010
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