
On Selection for Evolvability

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering.

2016

Andrew M. Webb

School of Computer Science

2

Contents

Abstract 13

Declaration 15

Copyright 17

Publications 19

Acknowledgements 21

1 Introduction 23

1.1 Research Questions . 25

1.2 Contributions . 25

1.3 Thesis Structure . 28

2 Evolvability 31

2.1 What is Evolvability? . 32

2.2 What Determines the Evolvability of an Individual? 35

2.3 Measures of Evolvability . 48

2.3.1 Measures not related to the offspring fitness distribution 48

2.3.2 Measures related to the offspring fitness distribution . . 50

2.4 Evolvability in Natural and Artificial Systems 52

3

2.4.1 Explanations for evolvability in natural systems 53

2.4.2 Building evolvability into artificial systems 60

2.5 Summary . 63

3 The Simple Evolvability Model 65

3.1 The Model . 65

3.2 Assumptions . 67

3.3 Optimal Constant γ . 68

3.4 Limitations and Conclusion 77

Appendices 85

3.A Justification for the Normalization Step 85

3.B The Expected Maximum Values of the Maximum-Sum Pair . . 86

4 Episodic Group Selection for Evolvability 89

4.1 The Effect of Sampling Noise on Evolvability Selection 90

4.2 Episodic Group Selection . 96

4.3 Evolvability Measures . 99

4.3.1 Likelihoods . 101

4.4 Evolvability Estimation Methods 104

4.4.1 Point-estimate estimation method 104

4.4.2 Sequential Bayesian filtering 107

4.4.3 Kalman filter estimation method 111

4.4.4 Particle filter estimation method 115

4.5 Termination Heuristics . 122

4.6 Fitness Functions . 123

4.6.1 Fitness function 1: simple evolvability model 124

4.6.2 Fitness function 2: mask matching 124

4.6.3 Fitness function 3: symmetry matching 126

4

4.6.4 Fitness function 4: modularly-varying pattern recogni-

tion . 130

4.6.5 Crossover . 133

4.7 Experimental Design . 136

4.8 Results . 142

4.9 Limitations and Conclusion 148

5 EGS With Asynchronous Reproduction 151

5.1 Bandit Problems . 152

5.2 Pure Exploration Thompson Sampling 153

5.3 Episodic Group Selection with Asynchronous Reproduction . . 154

5.3.1 Kalman filter . 155

5.3.2 Particle filter . 155

5.4 Experimental Design . 156

5.5 Results . 157

5.6 Limitations and Conclusion 163

6 Related Work 165

6.1 Estimation of Evolvability Genetic Algorithm 166

6.2 Recurrent Genetic Algorithm 169

6.3 Recurrent Bayesian Genetic Programming 170

6.4 Modelling Evolvability in Genetic Programming 173

6.5 Evolvability Search . 175

6.6 Comparison to This Work . 177

7 Conclusion 181

7.1 Challenges and Methods . 182

7.2 Findings . 183

7.3 Limitations and Future Work 185

5

7.4 Concluding Remarks . 187

A EGS Data 199

B EGS Decision Trees 215

C EGS-AR Data 231

D EGS-AR Decision Trees 249

This thesis contains 37792 words.

6

List of Tables

2.1 Definitions of evolvability . 34

3.1 Parameters of the simple evolvability model 69

4.1 Parameters shared by all of the algorithms 137

4.2 Parameters shared by evolvability selection algorithms 138

4.3 Parameters of the point-estimate method 138

4.4 Parameters of the Bayesian filters 139

4.5 EGS results index . 143

4.6 Probability ‘positive’ group has greater eventual fitness—relative

to selection for fitness—than ‘negative’ group 145

4.7 Probability ‘positive’ group has positive eventual fitness rela-

tive to selection for fitness . 145

4.8 Probability ‘positive’ group has greater eventual evolvability—

relative to selection for fitness—than ‘negative’ group 145

4.9 Probability ‘positive’ group has positive eventual evolvability

relative to selection for fitness 145

5.1 EGS-AR results index . 158

5.2 Probability ‘positive’ group has greater eventual fitness—relative

to selection for fitness—than ‘negative’ group 160

7

5.3 Probability ‘positive’ group has positive eventual fitness rela-

tive to selection for fitness . 160

5.4 Probability ‘positive’ group has greater eventual evolvability—

relative to selection for fitness—than ‘negative’ group 160

5.5 Probability ‘positive’ group has positive eventual evolvability

relative to selection for fitness 161

5.6 Probability mean eventual fitness—averaging over parameter

distributions—is positive relative EGS 161

5.7 Probability mean eventual evolvability—averaging over pa-

rameter distributions—is positive relative EGS 161

6.1 A comparison of EGS-AR with related algorithms part I . . . 178

6.2 A comparison of EGS-AR with related algorithms, part II . . 179

6.3 A comparison of EGS-AR with related algorithms, part III . . 179

8

List of Algorithms

1 The simple evolvability model 68

2 EGS with a point-estimate of evolvability 105

3 Tournament selection . 107

4 EGS with a Bayesian filter . 111

5 Kalman filter predict step . 112

6 Kalman filter update step . 113

7 Simplified Kalman filter predict step 113

8 Simplified Kalman filter update step 113

9 Particle filter predict step . 117

10 Particle filter update step . 118

11 Particle filter systematic resampling 120

12 Crossover . 135

13 Simulated binary crossover . 135

14 Binary string crossover . 135

15 Pure exploration Thompson sampling 154

9

10

List of Figures

2.1 Mapping phenomes onto fitness 37

2.2 From the parent’s genome to the offspring fitness distribution 38

2.3 Genome and phenome space, fitness, and the mappings between 38

2.4 An example change of genome-phenome map 40

2.5 An extra gene controls the representation 41

2.6 A neutral mutation in a non-trivial genome-phenome map . . 42

2.7 The dynamics of self-reproduction 47

2.8 An example distribution of fitness effects 51

3.1 The trade-off between selecting for A and B 71

3.2 The optimal value of γ, part I 75

3.3 The optimal value of γ, part II 75

3.4 Simulation and exact result comparison, N = 2 76

3.5 The expected value of A for three strategies, part I 78

3.6 The expected value of A for three strategies, part II 78

3.7 The trade-off between A and B with indirect selection, part I . 81

3.8 The trade-off between A and B with indirect selection, part II 81

3.9 Simulation and exact result comparison, N = 100 82

3.10 The increase in each trait due to un-normalized selection . . . 86

3.11 The increase in each trait due to normalized selection 86

11

4.1 Selection based on evolvability estimates 91

4.2 The probability of selecting correctly, part I 94

4.3 The probability of selecting correctly, part II 94

4.4 The probability of selecting correctly, part III 95

4.5 The probability of selecting correctly, part IV 95

4.6 Episodic group selection . 97

4.7 Episodic group selection with point estimates 106

4.8 Episodic group selection with Bayesian filtering 112

4.9 Kalman filter predict and update steps 114

4.10 Particle filter predict step . 118

4.11 Particle filter systematic resampling 120

4.12 Particle filter overview . 121

4.13 Mask matching fitness function 125

4.14 Mask matching fitness function mutations 125

4.15 Symmetry matching fitness function mutation 127

4.16 Symmetry matching fitness function threshold value 129

4.17 Objects of the modularly-varying fitness function 131

4.18 Modularly-varying fitness function 132

4.19 Modularly-varying fitness function, example network 133

4.20 Modularly-varying fitness function, probability of change . . . 134

4.21 Simulated binary crossover . 136

4.22 An example decision tree classifier 139

4.23 Mode and HDI of the distribution over the mean relative even-

tual fitness . 147

4.24 Mode and HDI of the distribution over the mean relative even-

tual evolvability . 147

6.1 Estimation of evolvability genetic algorithm 167

12

Abstract

On Selection for Evolvability

Andrew M. Webb

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2016

This thesis is about direct selection for evolvability in artificial evolution-
ary systems. The origin of evolvability—the capacity for adaptive evolution—
is of great interest to evolutionary biologists, who have proposed many in-
direct selection mechanisms. In evolutionary computation and artificial life,
these indirect selection mechanisms have been co-opted in order to engineer
the evolution of evolvability into artificial evolution simulations. Very little
work has been done on direct selection, and so this thesis investigates the ex-
tent to which we should select for evolvability. I show in a simple theoretical
model the existence of conditions in which selection for a weighted sum of
fitness and evolvability achieves greater long-term fitness than selection for
fitness alone. There are no conditions, within the model, in which it is ben-
eficial to select more for evolvability than for fitness. Subsequent empirical
work compares episodic group selection for evolvability (EGS)—an algorithm
that selects for evolvability estimates calculated from noisy samples—with
an algorithm that selects for fitness alone on four fitness functions taken
from the literature. The long-term fitness achieved by EGS does not ex-
ceed that of selection for fitness alone in any region of the parameter space.
However, there are regions of the parameter space in which EGS achieves
greater long-term evolvability. A modification of the algorithm, EGS-AR,
which incorporates a recent best-arm identification algorithm, reliably out-
performs EGS across the parameter space, in terms of both eventual fitness
and eventual evolvability. The thesis concludes that selection for estimated
evolvability may be a viable strategy for solving time-varying problems.

13

14

Declaration

No portion of the work referred to in this thesis has been submitted in support
of an application for another degree or qualification of this or any other
university or other institute of learning.

15

16

Copyright

i. The author of this thesis (including any appendices and/or schedules
to this thesis) owns certain copyright or related rights in it (the “Copy-
right”) and s/he has given The University of Manchester certain rights
to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright,
Designs and Patents Act 1988 (as amended) and regulations issued
under it or, where appropriate, in accordance with licensing agreements
which the University has from time to time. This page must form part
of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and
other intellectual property (the “Intellectual Property”) and any re-
productions of copyright works in the thesis, for example graphs and
tables (“Reproductions”), which may be described in this thesis, may
not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made
available for use without the prior written permission of the owner(s)
of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, pub-
lication and commercialisation of this thesis, the Copyright and any
Intellectual Property and/or Reproductions described in it may take
place is available in the University IP Policy (see http://documents.

manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant The-
sis restriction declarations deposited in the University Library, The
University Library’s regulations (see http://www.manchester.ac.uk/
library/aboutus/regulations) and in The University’s policy on
presentation of Theses

17

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

18

Publications

Andrew Webb, Julia Handl, and Joshua Knowles. “How Much Should You

Select for Evolvability?” In: Proceedings of the European Conference on

Artificial Life, 2015, Vol. 13, pp. 487-494.

Andrew Webb and Joshua Knowles. “Studying the Evolvability of Self-

Encoding Genotype-Phenotype Maps”. In: Proceedings of the International

Conference on the Synthesis and Simulation of Living Systems, 2014, Vol.

14, pp. 79-86.

19

20

Acknowledgements

First and foremost, I thank my supervisors, Dr Joshua Knowles and Dr

Julia Handl, for the balance they struck between letting me roam free and

reining me in. Thank you for the occasional—and necessary—criticism, and

for your time, expertise, and support. Thanks also to Dr Joseph Mellor,

whose advice has been frequent and invariably helpful, and to the School of

Computer Science and EPSRC for their financial support.

Secondly, thank you to the friends I’ve made, without whom my time at

the university would have been much less enjoyable. Particular thanks to

Andrew Mundy, Jonathan Heathcote, James Knight, and Bernard D’Antras

for the hikes and the lunches; to Andrew Leeming and Michael Lee for the

dinners and the cynicism; to Joe Razavi, Henry Reeve, and Salman Aljam-

maz; and to Francis Southern, Jon Parkinson, Nikos Nikolaou, Steve “Fluff”

Miller, Andy Chambers, and the rest of the CDT 2012 cohort.

Finally, thank you to my family, without whose endless encouragement

and support this would not have been possible. Thanks to mum and dad for

Wednesdays; to Richard, Emma, and Isaac for Fridays; and to George for

weekends.

21

22

Chapter 1

Introduction

The topic of this thesis is direct selection for evolvability in artificial evolu-

tionary systems, such as evolutionary algorithms.

There are three necessary conditions for evolution by natural selection:

heritability, variation, and differential reproductive success (Lewontin, 1970);

if a population of organisms differ from each other in heritable traits that

affect their fitness—their ability to survive and reproduce—then traits that

confer higher fitness will be selected for and spread in the population. How-

ever, such selection reduces the amount of variation within a population,

and so for evolution to continue there must be mechanisms to introduce new

variation. In natural organisms, these mechanisms are mutation and genetic

recombination, with mutations being the ultimate source of new genetic ma-

terial. In artificial evolution, such as evolutionary computation and artificial

life simulations, it is up to the designer of the system to define the variation-

introducing mechanisms.

It is now acknowledged that adaptive evolution requires the introduction

of not only variation, but of potentially adaptive variation; at least some

variant offspring must be fitter than their parents. The ability to produce

23

such adaptive variants is called evolvability.

The importance of evolvability has long been understood in the field of

evolutionary computation, in which the principles of evolution are used to

find solutions to problems. It is up to the designer of an evolutionary algo-

rithm to choose how to represent candidate solutions and how mutations will

operate on those representations. For a given problem, it cannot be taken

for granted that a given representation will lead to evolvability. As noted

by Ciliberti et al. (2007), man-made systems tend to be brittle, with a small

disruption of one part leading to a disastrous failure of the whole, and brittle

systems are not amenable to adaptive evolution by mutation and selection.

As a specific example, in genetic programming (the evolution of computer

programs), one possibility is to evolve source code directly, with programs

being mutated by replacing each character in the source code with low prob-

ability with another character. Nearly all such mutations are catastrophic

for fitness.

As noted by Wagner and Altenberg (1996), biologists took longer to ask

questions about evolvability and its origins, because they deal with a system

that found suitable representations in the distant evolutionary past, and so

evolvability within that system could be taken for granted.

It can be the case that individuals within a population differ from each

other in their evolvability. In this case, selection for evolvability is possible,

particularly if fitness and evolvability are correlated. Mechanisms for indirect

selection for evolvability are sought by evolutionary biologists. Such indirect

selection mechanisms have been co-opted by researchers in evolutionary com-

putation and artificial life in order to build the evolution of evolvability into

artificial systems.

This thesis is about direct selection for evolvability in artificial evolution—

24

for example, within an evolutionary algorithm—and will mostly be of interest

to evolutionary algorithm practitioners. There has been surprisingly little

work on this topic. The motivation of this work is two-fold.

• By directly selecting for evolvability, we might achieve higher long-term

fitness on some fitness functions.

• By studying direct selection for evolvability, we might better under-

stand the dynamics of selection for evolvability in natural evolution.

1.1 Research Questions

This thesis aims to answer two questions concerning direct selection for evolv-

ability, which are as follows.

1. Under the conditions that evolvability information is accurate and ob-

tained without a cost in terms of fitness evaluations, to what extent

should we select for evolvability? This question is addressed in Chap-

ter 3.

2. Under the conditions that evolvability must be estimated, and that

there is a cost in terms of fitness evaluations to obtain evolvability es-

timates, do the evolutionary algorithms described in Chapters 4 and 5,

which incorporate selection for evolvability estimates, achieve greater

long-term fitness or evolvability than an algorithm that selects for fit-

ness alone? This question is addressed in Chapters 4 and 5.

1.2 Contributions

The research contributions of this thesis are as follows.

25

Simple Evolvability Model I develop a simple model, designed in order

to study selection for evolvability in the case that certain assumptions are

satisfied. I ask to what degree we should select for evolvability in order to

maximize eventual fitness. The findings are as follows.

1. I obtain an exact expression for the degree to which we should select

for evolvability as a function of the model parameters.

2. An examination of the expression reveals that we should never select

more strongly for evolvability than we select for fitness, regardless of

the model parameters.

3. Taking the limit of the expression as the number of generations goes to

infinity reveals that, in order to maximize long-term eventual fitness,

we should select equally for fitness and evolvability unless evolvability

decays towards some non-zero value.

4. In the case that evolvability does decay towards some non-zero value I

find an expression, in terms of a small subset of the model parameters,

for the degree to which we should select for evolvability in the limit

that the number of generations goes to infinity.

Episodic Group Selection I introduce the episodic group selection (EGS)

algorithm. A comparison of this algorithm optimizing four time-varying fit-

ness functions to an algorithm which selects for fitness alone yields the fol-

lowing findings.

1. For most pairings of fitness function and evolvability estimation method,

we can identify regions of the parameter space in which EGS outper-

forms selection for fitness alone in terms of the eventual evolvability

26

achieved, though we cannot identify regions of the parameter space

in which EGS outperforms selection for fitness alone in terms of the

eventual fitness achieved.

2. The use of a sequential Bayesian filter to estimate population evolvabil-

ities leads to improved performance compared to relying on an evolv-

ability estimate calculated from a single offspring population.

3. Termination heuristics—designed to determine when to stop selecting

for evolvability in order to make more efficient use of fitness evaluations—

are found to almost universally increase the achieved long-term fitness

of the EGS algorithm.

Episodic Group Selection with Asynchronous Reproduction I in-

troduce the episodic group selection with asynchronous reproduction (EGS-

AR) algorithm. A comparison of EGS-AR with an algorithm which selects

for fitness alone and with EGS yields the following findings.

1. For most pairings of fitness function and evolvability estimation method,

we can identify regions of the parameter space in which EGS-AR out-

performs selection for fitness alone in terms of the eventual evolvability

achieved, though we cannot identify regions of the parameter space in

which EGS-AR outperforms selection for fitness alone in terms of the

eventual fitness achieved.

2. Averaging over the parameter distributions that we sample from, EGS-

AR outperforms EGS in terms of both the eventual evolvability and the

eventual fitness achieved.

27

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 gives the

necessary background to understand the concept of evolvability, its impor-

tance in natural and artificial evolutionary systems, and the wider context

of this work. In this chapter, I discuss the various definitions and measures

of evolvability that have been used, describe how individuals can differ from

each other in their evolvabilities, and discuss prior research that aims either

to discover the origins of evolvability in natural evolutionary systems or to

engineer the evolution of evolvability into artificial systems. By the end of

this chapter, the reader should understand the motivation for the work and

be equipped to understand the work itself.

In Chapter 3 I introduce the simple evolvability model. I first list the as-

sumptions of the model. I then derive an expression for the optimal constant

selection weight in terms of the model parameters, and comment on some

features of this expression. I end with a discussion of the assumptions, and

of the consequences if some of them are relaxed.

Chapter 4 introduces the episodic group selection (EGS) algorithm. First,

I explore the effect of relaxing the assumption of the simple evolvability model

that evolvability measurements are both accurate and precise, and are made

without a cost in fitness evaluations. I then describe the EGS algorithm, the

evolvability measures that it uses, and the methods the algorithm uses to

estimate evolvabilities, including two sequential Bayesian filtering algorithms.

I then describe the four time-varying fitness functions on which the algorithm

is tested and the experimental design. I compare the performance of the EGS

algorithm with an algorithm which selects for fitness alone, and comment

upon the results.

Chapter 5 introduces the episodic group selection with asynchronous re-

28

production (EGS-AR) algorithm. First, I motivate the algorithm by framing

the problem of determining the most evolvable population from a sequence of

evolvability measurements as a multi-armed bandit problem. I then describe

a recent best-arm identification algorithm, pure exploration Thompson sam-

pling (PTS), and how the EGS algorithm is modified to use PTS to choose

which population will go through a generation of mutation and selection

next. I then describe my experimental design and compare the results of the

EGS-AR algorithm to those of the EGS algorithm and selection for fitness

alone on the same four time-varying fitness functions as the previous chapter.

Chapter 6 describes the existing research most related to my own. I

describe five pieces of research related to direct selection for evolvability in

artificial evolution. I discuss the novel features and shortcomings of each

piece of work. I directly compare the findings of these works to my own, and

conclude that some progress has been made.

Chapter 7 concludes the thesis. A summary and analysis of the findings

are followed by a list of the limitations of the work. I end with some sug-

gestions for future work, some to address the listed limitations, and some to

take the research in new directions.

29

30

Chapter 2

Evolvability

The topic of this thesis is artificial selection for evolvability. This chap-

ter gives an overview of previous thought and research on evolvability and

selection for evolvability, by biologists and researchers in evolutionary com-

putation and artificial life.

We must first be clear what we mean by ‘evolvability’, since there are

many definitions in use in the literature. Section 2.1 lists some commonly

used definitions and identifies the definition that I use in the remainder of

this thesis.

In order for selection for evolvability to be possible, it must be possible for

individuals to vary in their evolvabilities. In Section 2.2 I describe the factors

that can cause individuals in natural and artificial evolutionary systems to

differ from one another in their evolvabilities. I explore the commonalities

and differences between these factors, and briefly discuss the implications of

these differences for the evolution of evolvability.

In order to select for evolvability we must be able to quantify the evolv-

ability of an individual. In Section 2.3 I list some commonly used measures

and identify a family of measures that I use in the remainder of this thesis.

31

Section 2.4 lists the mechanisms that researchers have proposed for selec-

tion for evolvability in natural and artificial evolutionary systems. I postpone

discussion of research concerning direct, artificial selection for evolvability

until Chapter 6, in which I will compare this research with my own.

The reader should bear in mind throughout this chapter that, although

much of what is discussed is biological, the ultimate interest of this thesis

is selection for evolvability in artificial systems, such as within evolutionary

algorithms. The ideas contained in this chapter inform the direct evolvability

selection strategies described in Chapters 3 to 5.

2.1 What is Evolvability?

As noted by Sniegowski and Murphy (2006), definitions of evolvability are

“almost as numerous as the papers and books that have been written on

the subject”. Just as the overloading of the term ‘complexity’—both in and

outside of an evolutionary context—has led to conceptual confusion, Pigli-

ucci (2008) believes that by ‘evolvability’ we really mean a family of related

concepts; we shouldn’t ask which definition is correct. We should instead

identify the range of concepts covered by the existing definitions, and then

ask ourselves which concept is intended whenever we invoke ‘evolvability’.

I do not introduce a new definition here, nor do I systematically categorize

the definitions that have come before. In this section, I use the taxonomies

of evolvability definitions that have been produced by other researchers in

order to identify the intended meaning of ‘evolvability’ in this thesis.

Pigliucci (2008) places definitions of evolvability into three categories.

The first, for which he suggests the term ‘heritability’, is evolvability in the

sense of Houle (1992). This is the ability of populations to respond to selec-

32

tion, and so it is determined by the existing genetic variation in a population.

Evolvability in this sense is a property of populations; it is meaningless to as-

cribe it to individuals. Moreover, selection cannot increase evolvability in this

sense, as selection always decreases variation. Pigliucci’s second category of

evolvability definitions, which he (confusingly) names ‘evolvability’, is exem-

plified by Wagner and Altenberg’s definition; evolvability is “the genome’s

ability to produce adaptive variants when acted upon by the genetic sys-

tem. . . there must be some small chance of a variant being adaptive1” (Wag-

ner and Altenberg, 1996). In contrast to the first category, evolvability in this

sense is about the capacity to generate—rather than the prior existence of—

suitable genetic variation. Pigliucci’s third category, ‘innovation’, exempli-

fied by Maynard Smith and Szathmáry’s major transitions (Maynard Smith

and Szathmáry, 1997), concerns major changes in the way that variation

is generated that allow the exploration of new regions of phenotype space.

The transition from unicellular to multicellular life is an example of such a

change. Such major transitions open up new regions of phenotype space for

exploration by shifting variance from a lower level (e.g., variation between

cells) to a higher level (e.g., variation between configurations of cells).

Pigliucci notes that most proposed evolvability definitions fall into his sec-

ond category. Similarly, Sniegowski and Murphy (2006) observe that most

recent work on evolvability is to do with the ability to produce heritable,

selectable variation. Gallagher (2009), in his own categorization of evolv-

ability definitions, identifies a distinct school who use the term in the sense

originally used by Dawkins (2003). Since for Dawkins, ‘evolvability’ is to do

with the ability to evolve by generating suitable phenotypic variation, this

school also falls into Pigliucci’s second category.

1By ‘adaptive’, the authors mean ‘better’, rather than ‘able to adapt or to respond.’

33

For the remainder of this thesis, ‘evolvability’ is meant in the sense of

Pigliucci’s second category. Table 2.1 lists some definitions from the literature

that belong to this category. If confusion arises concerning what is meant

by ‘evolvability’, the reader should refer back to Table 2.1. Sections 2.2

and 2.3 make these definitions more concrete, by describing the ways in which

individuals in natural and artificial systems can differ from one another in

their evolvabilities, and by describing how one measures evolvability as it is

defined here.

Table 2.1: Definitions of ‘evolvability’ that fall into Pigliucci’s second cate-
gory.

Hansen (2006) — “The ability to produce and main-
tain potentially adaptive genetic
variants.”

Kirschner and Gerhart (1998) — “The capacity to generate heritable
phenotypic variation.”

Wagner and Altenberg (1996) — “The genome’s ability to produce
adaptive variants when acted upon
by the genetic system.”’

Marrow et al. (1999) — “The capacity to evolve,” “The ca-
pacity for evolutionary change.”

Dawkins (2003) — “A tendency to evolve in certain di-
rections, or even just a tendency to
evolve at all.”

Conrad (1990) — “[Suitability] for self-organisation
through. . . variation and selection.”

There has been some disagreement about whether we ought to think of

evolvability as a property of individuals, populations, or somewhere in be-

tween. It is sometimes argued that since evolvability is, roughly, the capacity

to evolve, and individuals do not evolve, it cannot be a property of individ-

uals (Dawkins, 2003; Sniegowski and Murphy, 2006). It seems to follow that

it must be a property of populations, and this then leads to a discussion

34

about whether selection for evolvability must invoke selection on an evolu-

tionary unit higher than the individual, such as clade, kin, or group selection.

Alberch (1991) defines evolvability as a property of lineages, since lineage se-

lection can be a stronger force than group selection. Conrad (1979a, 1990)

seems to be the first to define evolvability as a property of individuals, and

others have followed (Altenberg, 1994, 1995; Kirschner and Gerhart, 1998).

We can ascribe evolvability as defined here to individuals if we think if it not

as the capacity to evolve, but as the capacity for one’s descendant lineage to

evolve.

2.2 What Determines the Evolvability of an

Individual?

This section examines how two otherwise identical individuals in a natural or

artificial evolutionary system might differ in their evolvabilities, i.e., how the

kinds of variation that are likely to occur in their descendants might differ

such that one lineage is better able to adapt than the other. My approach to

modelling and selecting for evolvability, which I describe in Chapters 3 to 5,

is agnostic to the reason for differences between individuals’ evolvabilities,

requiring only that differences exist and are heritable. However, the ideas

described in this section informed the choice of environments in which to test

my approach.

In this section, I use the following terminology. Whether describing a

natural or artificial system, I use ‘genome’ to mean the directly heritable

information of an individual, passed down during reproduction in a possibly

mutated form. By ‘phenome’, I mean the form and function of the individual;

the sum of the traits of an individual that are ‘visible’ to selection, i.e., that

35

affect fitness. For a natural organism, for example, weight, height, colouring,

and the ability to catalyse some reaction are all examples of traits that make

up the phenome.

For a natural organism, or a simulated organism within an artificial life

simulation, ‘fitness’ might be defined as the number of offspring of that organ-

ism that reach reproductive age. In the context of evolutionary computation,

‘fitness’ is usually taken to mean a value indicating the quality of an indi-

vidual or candidate solution, which is then used to determine reproductive

success.

An individual exists in the context of an ‘environment’, by which I mean

the sum of all factors affecting an individual’s fitness that are not properties

of the individual itself, i.e., that are not part of the phenome. For a natural

or simulated organism, the ‘environment’ is the literal biotic and abiotic

environment in which the organism finds itself, including any other organisms

that it interacts with. For a candidate solution in an evolutionary algorithm,

the fitness function is the environment. I will use ‘genome-phenome map’

to mean a function that determines the phenome of an individual given its

genome. I use this terminology in favour of the more common ‘genotype’,

‘phenotype’, and ‘genotype-phenotype map’ in order to avoid the confusion

that can arise due to the overloading of terminology; Mahner and Kary (1997)

have identified seven conflicting definitions of ‘genotype’, five of ‘genome’,

and five of ‘phenotype’. The phrase ‘genotype-phenotype map’ can cause

particular confusion, as we will see below, and I will avoid using this phrase.

The fitness of an individual, then, is jointly determined by the phenome

of the individual and the environment. We can visualize the space of all

phenomes, and the mapping from phenomes to fitness determined by the

environment, as in Figure 2.1. The nodes on the left of the figure repre-

36

sent phenomes. The edges between phenomes represent probable mutations.

Horizontal lines connect phenomes to their fitness values.

FitnessPhenome space

Figure 2.1: The environment determines the mapping from phenome space
to fitness. The asterisk indicates the phenome of a particular individual. The
nodes on the left-hand side are phenomes, which are connected to each other
by likely mutations. The horizontal lines show how the environment maps
each phenome onto a fitness value.

When a given individual, with a given phenome, reproduces there will be

some probability distribution over the phenome of the offspring. For exam-

ple, the individual with the phenome marked with an asterisk in Figure 2.1

might have a uniform probability of generating offspring with the phenomes

it is connected to in that figure. This offspring phenome distribution of an

individual, along with the environment, gives a probability distribution over

the fitness of the offspring of the individual. As we will see in Section 2.3,

evolvability is often measured in terms of this offspring fitness distribution.

It is mutations that are the ultimate source of this distribution. How-

ever, typically, mutation doesn’t operate on the phenome directly. In an

evolutionary algorithm (EA), mutation typically operates on some kind of

data structure, such as strings or trees over some alphabet. Mutation usu-

ally operates in a way that is considered ‘natural’ for that data structure.

For example, the mutation operator on a string might replace each character

with some low probability with another character drawn uniformly from the

37

alphabet. During selection, the data structures are interpreted as represent-

ing candidate solutions to the problem. It is well known that the success of

an evolutionary algorithm in finding a solution to a problem depends on how

candidate solutions are encoded. This is known as the representation prob-

lem (Wagner and Altenberg, 1996). In natural organisms, mutations come

in the form of insertions, deletions, inversions and other errors that occur

with low probability across the genome. It is the combination of develop-

mental processes and environmental influences that create the organism from

its genome.

MutationParent
genome

Distribution over
(offspring) genomes

Distribution over
phenomes

Encoding Environment Distribution
over fitnesses

Figure 2.2: The pathway from the parent’s genome to the probability distri-

bution over the offspring’s genome, phenome, and fitness.

FitnessGenome space Phenome space

Figure 2.3: Genome space, phenome space, fitness, and the mappings be-
tween them determined by developmental systems/solution encodings and
the environment. The connections between genomes show likely mutations.

Figure 2.2 shows the pathway from the parent genome to the distribution

over offspring fitnesses described above. Figure 2.3 shows an example genome

space and its mapping onto phenome space and ultimately onto fitness. The

edges between genomes represent mutations that have a non-negligible proba-

38

bility of occurring. The edges giving the mapping from genomes to phenomes

are, in the case of EAs, given by the way in which the algorithm designer

chooses to encode candidate solutions, and in the case of natural organisms,

are determined by developmental processes. Figures 2.2 and 2.3 are an illus-

tration of what Altenberg (1994) calls the ‘transmission function’.

Although the environment (i.e., the mapping from phenomes to fitness)

might vary over time, and might (as is common) depend on the current state

of the population, in this section we are asking how two individuals with

the same phenome can differ in their evolvabilities. If the individuals coexist

in the same environment, then they can differ in evolvabilities only if they

have different offspring phenome distributions. It was in terms of differing

offspring phenome distributions that Kirschner and Gerhart (1998) described

evolvability.

Although the probabilities of different mutations (i.e., the edges between

genomes in Figure 2.3) can be under evolutionary control—for example, there

are mutator genes that increase the probability of mutations in surrounding

genes—we will consider this mutational neighbourhood to be fixed. Since we

consider the distribution over mutations and the environment to be invariant

between individuals, we are left with two ways that individuals can differ

in their evolvabilities independently of their phenome; if the mapping from

genome to phenome is many-to-one, then changing the genome can leave

the phenome unchanged while changing the offspring phenome distribution.

Alternatively, the mapping from genome to phenome itself can change under

some circumstances. I will now explore these two possibilities.

An evolutionary algorithm practitioner might compare the evolvabilities

achieved by individuals when two or more different representations are used.

Figure 2.4 illustrates two competing ways of representing phenomes in the

39

same genome space. The genome and phenome marked with an asterisk

indicate the genome and phenome of a particular individual. The right hand

side of the figure shows the phenome neighbourhood of that individual, i.e.,

the phenomes reachable by likely mutations. The figure shows how two

representations can give the same genome-phenome pair different phenome

neighbourhoods, and therefore differing evolvabilities.

Genome space Phenome space Phenome
Neighbourhood

a)

b)

Figure 2.4: An example of a change of genome-phenome map. The asterisk
indicates the genome and phenome of a particular individual. The right-hand
side of the figure shows the ‘phenome neighbourhood’ of that individual, i.e.,
the phenomes that are reachable by likely mutations. a) and b) represent
two different genome-phenome maps.

An example of this is Dawkins’ exploration of competing developmental

systems for the two-dimensional artificial organisms in his biomorphs simula-

tion experiments (Dawkins, 2003). This is an example of an outside observer

manipulating phenome neighbourhoods, and therefore evolvability, by chang-

ing the rules of the system. How might evolvability change in a heritable

way, within the rules of the system? Dawkins added genes to his artificial

organisms that act as switches between rival developmental systems. The

idea was that this would allow individuals to differ in their developmental

systems, and therefore their evolvabilities. Similarly, in an evolutionary algo-

40

rithm, we might use one or more genes to specify how the candidate solutions

are encoded in the rest of the genome. This is illustrated in Figure 2.5. This

figure represents the same system as Figure 2.4, with a single added gene

that switches an individual between the rival mappings. The single vertical

line connecting the two halves of the genome space are a visual shorthand for

a mutation connecting each corresponding genome. Note, however, that this

new representation switching gene is a part of the genome, and considered

as a whole, the genome-phenome map is fixed.

Genome space Phenome space

Figure 2.5: An illustration of the action of an extra gene which controls the
representation of an evolutionary algorithm or the developmental system of
an organism. The thick vertical line is a shorthand for a mutation connecting
each node in the upper region of the genome space with the corresponding
node in the lower region. Mutations to this extra gene change how the
remainder of the genome maps onto the phenome.

This kind of representation switching gene is a particularly straightfor-

ward example of a so-called ‘neutral’ mutation that alters the phenome neigh-

bourhood without changing the phenome. A generalization is shown in Fig-

ure 2.6. This figure shows a genome-phenome map that allows such neutral

mutations.

Toussaint (2002) identifies some properties that a genome-phenome map

would have to have in order that phenotypic variability becomes, in the course

of evolution, structured in such a way that phenome space is explored more

41

Genome space Phenome space Phenome
Neighbourhood

a)

b)

Figure 2.6: A genome-phenome map that allows ‘neutral’ mutations, which
leave the phenome unchanged but alter the phenome neighbourhood. The as-
terisk indicates the genome and phenome of a particular individual a) before
and b) after a neutral mutation.

effectively. One property identified is that it must be the case that in order to

understand the trajectory of phenotypic evolution, one must consider neutral

traits. Toussaint calls mappings with these properties ‘non-trivial’. He points

to tertiary structure, i.e., the shapes of proteins after folding, as an example

of a mapping from genome (DNA) to phenome (protein shape) that has the

desired properties. The genome-phenome map having these properties is one

way that individuals can differ in their evolvabilities.

In natural organisms, there are mechanisms of non-genetic inheritance.

These are means of transmitting information—of varying reliability—between

generations outside of the genome. Examples include DNA methylation,

chromatin modifications, and the transmission from parent to developing

offspring of hormones, cytokines, and microorganisms (Toth, 2014). We can

imagine that some of these factors might influence the developmental process,

and therefore seemingly the genome-phenome map. Moreover, these factors

42

can be ‘mutated’ by environmental noise. However, this is not qualitatively

different from the kind of changes within a ‘non-trivial’ genome-phenome

map described above. It is a matter of terminology; we may include these

non-genetic heritable factors in what we call the ‘genome’.

I will briefly discuss here a terminological problem caused by the varying

uses of the words ‘genotype’ and ‘phenotype’ noted above. A neutral muta-

tion such as that shown in Figure 2.6 would be commonly called a change

in the ‘genotype-phenotype map’. In this usage, ‘phenotype’ means some

subset of the traits of an individual that are currently under consideration,

and ‘genotype’ means the set of genes considered to directly code for those

traits. For an example of this usage, consider Wagner and Altenberg (1996),

who propose that the genotype-phenotype map may evolve by epistatic mu-

tations or by the creation of new genes. Sometimes, what I have called here

the genome-phenome map is called the ‘genotype-phenotype map as a whole’

(Toussaint, 2002), and is considered to be fixed. However, some researchers,

typically computer scientists, use ‘genotype-phenotype map’ synonymously

with our usage of ‘genome-phenome map’2.

It has been claimed that heritable changes to the genome-phenome map,

or Toussaint’s ‘genotype-phenotype map as a whole’, are logically incon-

sistent (Toussaint, 2002). The argument is that heritable information is

contained in the genome, and so the genome cannot determine the genome-

phenome map in any meaningful way, for if it did then we could infer the

map, and therefore the phenome, from the genome alone, and the genome-

phenome map would in fact be fixed—a contradiction. This argument can be

extended to include the non-genetic inheritance mechanisms discussed above.

However, the argument fails if we consider the dynamic and partially

2Lee Altenberg, personal correspondence.

43

self-referential nature of the developmental systems of organisms. McMullin

(2012) has advocated studying artificial evolutionary systems in which the

developmental systems of organisms are specified self-referentially, specifi-

cally in order to study their capacity for the evolution of evolvability. He

motivates his work with a discussion of John von Neumann’s Universal Con-

structor (Von Neumann and Burks, 1966), which was a sort of proof by

construction that machines are capable of producing machines of greater

complexity than themselves, and that evolution could lead to machines of

ever greater complexity. It will aid us to briefly consider the operation of

von Neumann’s Constructor. The Constructor is a configuration within a

2D cellular automaton. The Constructor consists of the following.

• A one dimensional structure called the ‘tape’, which is inactive; by

itself it does nothing.

• An active ‘machine’, which amongst other components contains

– A ‘tape copier’, which causes a copy of the tape to be produced,

offset from the original by some distance

– A ‘decoder’, which consults the tape, interprets it as specifying a

two-dimensional structure, and constructs that structure adjacent

to the copied tape.

The Constructor is self-reproducing in the case that the tape, when inter-

preted by the decoder, specifies the Constructor itself, including its decoder.

The ‘meaning’ of the tape, i.e., the configuration that it specifies, depends

upon the decoder that is interpreting it. This is also true of the part of the

tape that specifies the decoder itself. This is the self-referential property re-

ferred to above. Von Neumann noted that a mutation in the part of the tape

44

that specifies the decoder would result in an offspring Constructor that would

interpret its tape differently from its parent. He discounted such mutations

as inevitably leading to infertility. However, as McMullin (2000) notes, not

all such offspring would be infertile. A fertile mutant with a modified de-

coder corresponds to a change in the developmental system. Moreover, such

a change might not be reversible by simply reversing the mutation.

Consider the following toy example of a non-reversible change of this

kind. Suppose we have an organism that has two possible developmental

systems, D1 and D2, and that the specification of the developmental system

is contained in a gene with two alleles, g1 and g2. Suppose that the meaning of

this gene in the offspring of an individual is conditional on the developmental

system implemented by the parent in the following way.

D1(g1) = D1, D2(g1) = D2,

D1(g2) = D2, D2(g2) = D2.
(2.1)

This means that if the parent implements developmental system D1, then

an offspring with gene gi will implement developmental system Di. However,

if the parent implements developmental system D2, the offspring will also

implement D2 regardless of the allele of the gene that is present.

An illustrative—but rather implausible—biological example of a change

to the developmental system of this kind would be a change to the genetic

code via modifications to transfer RNA (tRNA). The final stage of the trans-

lation from DNA to protein is accomplished by matching up triplets of nu-

cleotides to amino acids. Which triplets match with which amino acids is

determined by the shape of the tRNA in the cell; each tRNA molecule con-

tains the complement of a nucleotide triplet on one end (and so has an affinity

for the triplet itself), and is shaped on the other end to have an affinity for

45

a particular amino acid. In a sense, the tRNA determines the ‘meaning’ of

the DNA currently being translated. However, the tRNA is itself specified in

DNA, and is constructed in the same manner as any other protein structure;

this aspect of development is self-referential in the sense described above.

We can imagine an unlikely mutation that causes altered tRNA to be con-

structed such that the genetic code is changed, and further that this change

is what McMullin calls ‘backward compatible’, i.e., that the new tRNA, when

reading the mutated tRNA genes, cause themselves to be constructed.

This kind of change to the genome-phenome map seems to be qualitatively

different to the neutral mutations illustrated by Figure 2.6. One of the major

differences is that this kind of mutation can produce individuals that are

not self-reproducers. Above, we discussed systems where in the absence of

mutations offspring resemble parents. However, consider the system which

is as follows.

D1(g1) = D1

D1(g2) = D2

D2(g2) = D3

D3(g2) = D4

...

(2.2)

In this system, an organism with developmental system D1 is a self-

reproducer in the sense that, in the absence of mutations, the offspring and

parent are identical. However, a mutation to allele g2 moves us away from

this fixed point, and the ‘offspring’ (if the word is appropriate under these

circumstances) do not resemble the parents at all. Figure 2.7 is an illustra-

tion of this kind of evolutionary system. Each of the three networks in the

figure represent a genome. A mutation takes an individual from one node

46

to the corresponding node in another network. The shape of the nodes rep-

resent phenomes, and the arrows represent parent-offspring relationships in

the absence of mutations. Note that only one individual, in the left-hand

network is depicted as self-reproducing. The middle network depicts a four

generation cycle, which switches between two phenomes.

Figure 2.7: Each network represents a genome. Mutations take an individual
from one node to the corresponding node in a different network. Shapes
represent phenomes. Arrows represent parent-offspring relationships in the
absence of mutations.

Dawkins (2003) finds it useful to make a distinction between two kinds of

mutation: ordinary changes within an existing genetic system, and changes

to the genetic system itself. Mutations that affect development as described

above seem to be a good candidate for the latter.

I have described in this section two ways in which individuals can differ

in their offspring phenome distributions, and therefore in their evolvabili-

ties. The first was neutral mutations in what Toussaint calls a ‘non-trivial’

genome-phenome map. The second was a heritable change to the genome-

phenome map itself.

47

2.3 Measures of Evolvability

This section reviews proposed measures of evolvability from the literature,

focusing on measures that roughly capture evolvability as defined in Sec-

tion 2.1.

In Chapters 3 to 5, I use measures of evolvability that are functions of the

offspring fitness distribution (OFD). For this reason I categorize the measures

described here into those that are and are not functions of the OFD.

2.3.1 Measures not related to the offspring fitness dis-

tribution

Since evolvability, as defined in Section 2.1, is related to the capacity for

adaptive evolution, one obvious way to measure it (with respect to some en-

vironment) is to measure the adaptation of a population to an environment

or environments over time. Van Belle and Ackley (2002) evolve programs to

approximate a periodically changing function. They measure the mean per-

generation fitness increase within each function epoch. This measures how

effective the population is at finding a good approximation to the function

presented within each epoch. In another paper in which the target changes

gradually, the same authors measure the online fitness (i.e., the average fit-

ness so far) of a population (Van Belle and Ackley, 2003). If evolvability can

change over time, then a suitable extension would be to measure the average

fitness over a sliding window. A longer window would give more information

about how effective the evolutionary search is within the window, but the

measurement would be less precise in time.

Draghi and Wagner (2009) use a similar method to measure the evolv-

ability of an individual (rather than a population) with respect to a set of

48

environments. They report the mean amount of adaptation (averaging over

trials and environments) towards the (known) target optimal phenotype in a

given number of generations after seeding the initial population with copies

of the individual. They measure adaptation by how much closer the evolved

phenotypes are to the known target phenotype than the ancestral phenotypes

were. Quayle and Bullock (2006) use a similar measure to the above, but

report the time taken to hit a (known) phenotypic target rather than the

fitness achieved by a given time.

Reisinger et al. (2005) have a population evolve in a periodically switching

environment, and they distinguish between a training and test phase. They

measure the correlation between the amount of time spent in the training

phase and the performance in the testing phase. By doing so, they mea-

sure the degree to which the population retains and generalizes information

learned about the domain. Note that according to the definition of evolvabil-

ity we are using, Reisinger et al. measure the evolution of evolvability rather

than evolvability itself.

Some measures are not directly related to fitness or adaptation, while

still capturing evolvability as defined in Section 2.1. Palmer and Feldman

(2012) calculate the predicted probability of a lineage avoiding extinction for

k generations. They argue that while the probability of beneficial mutations

occurring—and the degree of fitness increase when they do occur—is impor-

tant, the incidence of severely deleterious mutations is important too. They

argue that their k-survivability measure gives more of an indication of long-

term evolutionary success than more standard evolvability measures such as

those described in this chapter.

Some measures require being able to identify traits or features of organ-

isms. Hansen et al. (2011) measure a trait’s response to selection per strength

49

of selection. The evolutionary activity measure of Bedau and Packard (1996)

measures the rate at which adaptive features are introduced. Adaptive fea-

tures are defined as those that survive for longer than some threshold amount

of time. Features can be traits, genes, or any other feature of an individual

that can influence fitness—and thus can differ in their ability to survive—and

can be identified.

2.3.2 Measures related to the offspring fitness distri-

bution

The measures of evolvability described in this section are functions of the

offspring fitness distribution (OFD). Section 2.2 gives some idea of the de-

termining factors of this distribution. The measures described here depend

on the pre-selection introduction of variation, and are primarily properties

of individuals.

During natural or artificial reproduction, mutations occur with some

probability across the whole genome, and the genetic material of two par-

ents might be combined in a random fashion to produce the genome of the

offspring. The end result of this large number of random events is the off-

spring, which has some fitness value; we can treat the fitness of the (unknown,

perhaps yet unborn) offspring of a parent or parent(s) as a real-valued ran-

dom variable. Altenberg (1994) is a proponent of quantifying evolvability in

terms of this fitness distribution of the offspring, and we will return to his

proposed measure shortly. This distribution is a property of the parent, and

the fitnesses of any offspring the parent actually has are samples from this

distribution.

Figure 2.8 illustrates what the (relative) offspring fitness distribution

might look like due to a single random mutation. The distribution over

50

fitness given that a single mutation has occurred is sometimes called the dis-

tribution of fitness effects of a mutation in the literature. A relative fitness

of 0 in the figure represents a mutation that is either lethal or renders the

offspring infertile. A relative fitness of 1 means that the mutation has no ef-

fect on fitness. Mutations giving relative fitness less than 1 are detrimental,

and those giving relative fitness greater than 1 are beneficial. The shown dis-

tribution is realistic for some natural organisms, with most mutations being

either lethal or nearly neutral (Eyre-Walker and Keightley, 2007).

0 1
Relative fitness f ′/f

P
ro

b
ab

il
it

y
d
en

si
ty

Figure 2.8: An example probability distribution of the fitness effect of a
mutation. The horizontal axis shows the relative fitness of the offspring,
i.e., the fitness of the offspring divided by the fitness of the parent. The
example distribution has most probability mass around zero (representing
lethal mutations) and one (representing neutral or nearly neutral mutations).

In practice, the true OFD of an individual will be hidden from us, and the

samples we have (the fitnesses of the offspring the individual actually has)

will be the only information we gain about the distribution. The measures of

evolvability described below, being functions of the OFD, must be estimated

using the fitnesses of the actual offspring. These estimates of evolvability

are themselves random variables, since their values depend on the observed

offspring fitnesses. Some of the novelty of my own work, described in Chap-

51

ters 4 and 5 is in the combination of estimates of evolvability from subsequent

generations to produce a less noisy estimate of evolvability.

Smith et al. use as a measure of evolvability the probability of a benefi-

cial mutation. This corresponds to the shaded area in Figure 2.8. They also

measure the average fitness of the top Cth percentile of the offspring fitness

distribution, which takes into account the shape of the upper tail (Smith

et al., 2002). Altenberg also takes into account the shape of the distribu-

tion, measuring the correlation between the parent’s fitness and the upper

tail of the offspring fitness distribution (Altenberg, 1994). Other proposed

measures include the variance or standard deviation of fitness, or the max-

imum offspring fitness (amongst N offspring) (Gallagher, 2009, p. 42), and

the expected fitness after selection (Turney, 1999).

2.4 Evolvability in Natural and Artificial Sys-

tems

This section reviews proposed explanations for the evolvability observed

in natural systems (in Section 2.4.1) and proposed mechanisms to build

evolvability—or the evolution of evolvability—into artificial systems (in Sec-

tion 2.4.2).

For natural systems, this is a question of how it came to be that the kinds

of variation induced in natural organisms as a result of mutation are in some

way well suited to the environment, such that adaptation can proceed by

evolution. For artificial systems, it is a question of how we can build systems

such that that is true. The approach taken by researchers answering this

question depends on their motivations and goals. Artificial life researchers,

while dealing with artificial simulations and models, are ultimately trying to

52

understand life as a general phenomenon, or life as it could be. Artificial life

researchers are therefore likely to restrict themselves to studying biologically

plausible mechanisms to encourage evolvability. Researchers in Evolutionary

Computation (EC), on the other hand, are interested in building algorithms

to solve problems. Although evolutionary algorithms are inspired by evolu-

tion, and researchers may use the explanations proposed by biologists for the

evolvability observed in the natural world in order to build better algorithms

(and vice versa), EC researchers need not constrain themselves to biologically

plausible mechanisms.

2.4.1 Explanations for evolvability in natural systems

As noted by Wagner and Altenberg (1996), biologists did not initially look for

explanations for evolvability; the existence of life on Earth, and the variety of

life, was evidence that natural organisms were undergoing adaptive mutations

at a sufficient rate. It was easy to overlook the question of how life attained

this evolvability. Wagner and Altenberg point to Levinton (1988) as an early

acknowledgement that biologists had until that point studied “the fate of

variability but not the production of variability”3.

It has long been clear in Evolutionary Computation (EC) that the success

of an evolutionary algorithm in solving a problem depends on how candidate

solutions are represented or encoded; it is easy to design evolutionary sys-

tems which are not evolvable. Indeed, early acknowledgement in the field of

biology for the need for an explanation for evolvability in nature came from a

biologist experimenting with artificial evolution simulations. Dawkins (2003)

3We have here another problem of terminology. Wagner and Altenberg, and later
authors, use ‘variation’ to mean actual, present differences between individuals in a pop-
ulation, and ‘variability’ as the production of such differences. For these, Levinton uses
‘variability’ and ‘the production of variability’ respectively.

53

(published in its original form in 1989) studies the evolution of biomorphs.

These are two dimensional patterns intended to mimic the kind of body pat-

terns seen in various plants and animals. Evolution of biomorphs proceeds

interactively, with the researcher choosing for reproduction those biomorphs

which most resemble an existing body plan. What Dawkins found was that

the success of this procedure depends crucially on the kind of development

that the biomorphs undergo, restricting or heavily biasing the phenotypes

available. If the biomorphs undergo a developmental stage that ensures cer-

tain symmetries, it is much easier to evolve familiar body plans than if the

biomorph genome is unstructured, with each gene specifying (for example)

the end-points of a line.

Once it became clear that evolvability required an explanation, some

researchers argued that evolutionary theory as it stood did not explain the

variational properties of natural organisms (Sniegowski and Murphy, 2006).

There was disagreement about whether there was any need to invoke the

evolution of evolvability, and if so, if there could be selection for evolvability.

Amongst those who believe that evolvability has evolved, there is ongo-

ing debate about the mechanisms involved (Pigliucci, 2008), although Hansen

(2006) argues that it is naive to expect that any single mechanism alone ex-

plains the evolution of evolvability. Proposed mechanisms can be roughly

separated into those that involve more or less direct selection for evolvability

as a result of the changes in fitness that it leads to over subsequent gen-

erations, and those in which the increase of evolvability is a side-effect of

selection for other traits. This separation corresponds to the categorization

by Visser et al. (2003) of explanations for the evolution of phenotypic ro-

bustness into adaptive and congruent hypotheses, later co-opted by Hansen

(2006) in order to categorize explanations for the evolution of evolvability.

54

So-called congruent hypotheses for the evolution of evolvability posit that

evolvability increases as a result of selection for robustness to environmental

noise. The idea is that variation due to mutations often affects organisms in

similar ways to variation due to environmental noise. As a result, organisms

that can survive environmental variation, by reducing or otherwise shaping its

effects, will be better able to survive genetic variation (Hansen, 2006). Since

environmental variation is more prevalent than genetic variation, and the

ability to survive environmental variation has a direct effect on fitness, this

creates strong selection for the ability to survive genetic variation. For the

remainder of this section I focus on adaptive explanations for the evolution

of evolvability, i.e., those that require selection for evolvability.

Selection for evolvability as a result of the fitness differences that result

has been controversial for two reasons. The first is the problem of teleology.

Researchers have noted that selection for evolvability seems to require se-

lection for traits not because they increase fitness, but for the future effects

those traits have on fitness within a lineage (Sniegowski and Murphy, 2006;

Pigliucci, 2008). Dawkins (2003) is careful to be clear that he isn’t making an

argument that requires such foresight in evolution. But as Gallagher (2009,

p.16) notes, this argument of a problem of teleology is put forward most

often by researchers in order to rebut it. Selection for evolvability requires

the same condition as selection for any other trait; that there exist varia-

tions in evolvability within a population. All that is required additionally is

that differences in evolvability are sustained for long enough that correlated

differences in fitness can result.

The second perceived problem with selection for evolvability as a result

of the resulting fitness differences is that it seems to require selection on a

level above the individual, since evolvability is often seen as a property of

55

a lineage or clade. Selection operating at levels higher than the individual

have become unpopular, and higher-order selection is known to be a weaker

force (Sniegowski and Murphy, 2006). However, as we saw in Section 2.3,

evolvability can be seen as a probabilistic property of an individual. Individ-

uals with high evolvability are likely to have ancestors with high evolvability,

and are likely to be highly fit because of the beneficial mutations that have

occurred in between those generations. Of course, in the context of evolu-

tionary computation, any controversy surrounding selection at levels higher

than the individual disappears; an evolutionary computation practitioner

cares less about the biological plausibility of an algorithm and more about

its performance, and may explicitly build group selection into an algorithm.

A commonly studied mechanism for selection for evolvability is selection

for mutator genes, which affect parameters like the mutation or recombina-

tion rates of the surrounding genes or the genome as a whole. In a changing

environment, a mutation to such a mutator gene in an organism that causes

the mutation rate to transition from low to high may allow the descendants of

that organism to adapt more quickly. Since those organisms also inherit the

modified mutator gene, the modified (evolvable) form is selected for. On the

other hand, in sexually reproducing organisms the link between the modified

mutator gene and the adaptations it causes can be broken by recombina-

tion (Sniegowski and Murphy, 2006; Pigliucci, 2008); organisms can inherit

the beneficial mutations independently of the modified mutator gene, leading

to lower selection for the modified mutator gene.

Conrad (1979b) gave an early argument for a mechanism for the evolution

of evolvability. He notes that for adaptation through evolution to work a

gradualism property is necessary; small changes in the genome (mutations)

need to lead to small changes in function, and therefore in fitness. He gives

56

as an example enzymes—small changes to enzymes leads to small changes

in their affinities. Conrad shows that there will be strong selection for any

change to the genetic system that creates gradual paths between peaks in the

fitness landscape. Central to the argument is that if two adaptive peaks are

separated by a distance of m (i.e., if m independent mutations have to happen

to get from one peak to the other), and if all of the intermediate mutants are

significantly less fit than either peak, then all of the m necessary mutations

would have to happen simultaneously in order to get from one peak to the

other—an extremely unlikely event.

If, however, just one of the m! paths from one peak to the other were

such that each intermediate mutant were not significantly less fit than the

one before, then the required mutations need not occur simultaneously, sig-

nificantly increasing the probability of traversing between the peaks. Conrad

calculates, for two settings of the various parameters (such as protein length

and the distance between the adaptive peaks), a reduction by a factor of 109

and 1018 respectively in the amount of time taken to traverse from one peak

to the other if such a smooth path is created. Any such change to the genetic

system within a lineage is likely to survive by virtue of that lineage reaching

adaptive peaks not available to other lineages. Conrad notes that this ef-

fect is much stronger than the hitchhiking effect of mutator genes discussed

above, by virtue of the magnitude of the evolvability increase that results.

Conrad quantifies Maynard Smith’s earlier observation that natural selection

can only lead from one protein to another if they are connected by a network

of functional proteins; if the only way to mutate from one protein to another

is via an intermediate, nonfunctional protein, then natural selection is un-

likely to lead from one to the other, because the pair of mutations required

are unlikely to occur together (Maynard Smith, 1970).

57

Conrad (1979a) also suggested that selection for evolvability might be

more intense in changing environments. Similarly, Wagner and Altenberg

(1996) argues that pleiotropic effects of mutations can become decoupled if

one trait is under stabilizing selection while another is under directional se-

lection, which may happen due to perturbations in the environment. Under

these circumstances the genetic system may change to allow traits that cor-

respond to probable changes in the environment to vary independently from

those that do not.

There have been simulation studies of the effects of fluctuating environ-

ments on selection for evolvability (Earl and Deem, 2004; Draghi and Wag-

ner, 2008). Often in these simulation experiments the environment changes

in a modular way. For example, organisms may have to evolve to solve

some problem that can be broken down into sub-problems, and it is the sub-

problems that change over time. Often, what is shown is that the genetic

system changes such that mutations alter the organism in a similarly modu-

lar way (Kashtan and Alon, 2005; Kashtan et al., 2007); mutations can alter

performance on one sub-problem without affecting performance on another.

This of course is a specific case of what it means for an organism to become

more evolvable in a fluctuating environment; that the kinds of changes that

the organism can undergo due to mutation correspond to probable changes

in the environment.

Palmer and Feldman (2011) study in simulation the effect of environ-

ments that vary in space rather than in time, and find that such variation

creates selection for evolvability. In these simulations, there is a spatial struc-

ture on the population, and organisms may migrate slowly. They also find

that periodic extinction events in regions of the space intensify selection for

evolvability—corroborating earlier arguments by Dawkins and by Kirschner

58

and Gerhart on the contributions of extinction and migration to the evolu-

tion of evolvability—as organisms migrating into newly vacated regions tend

to be equally sub-optimal in fitness, but may differ in their ability to adapt

to the local environment. Lehman and Miikkulainen (2015) also study the

effect of periodic extinctions in a spatially varying environment, and find

selection for evolvability results.

As noted above, Dawkins (2003), after experimenting with artificial evo-

lution, was led to the realization that rival embryologies can give vastly

different capacities for adaptive evolution. This leads him to conclude that

more or less drastic changes to embryology have occurred and been selected

for by virtue of their evolvability. He notes that it may seem that selection

for evolvability requires group or species selection. However, like Aboitiz

(1991), he suggests a kind of lineage selection; an individual with a modified

embryology may have offspring that can quickly fill vacant niches. As an

example he uses the emergence of segmentation as a significant innovation

in embryology; in organisms with segmentation, the form of the segment is

specified only once in the genome. Dawkins argues that the first segmented

organism was probably less fit as a result, but that it was fit enough to sur-

vive, and that segmentation opened up phenotypic possibilities such that its

descendants could quickly diverge and occupy vacant niches. As other exam-

ples of innovations in embryologies, he gives various types of symmetry and

recursion. This argument is similar to that given by Conrad; these changes in

embryology survive by virtue of the fitness-increasing mutations they allow

within that lineage. Selection for an optimal offspring sex ratio is another

example of lineage selection.

Alberch (1991) gives a similar argument; that certain changes in devel-

opment, such as the emergence of multicellularity or segmentation, open up

59

regions of phenotype space pregnant with possibility, and that such changes,

as long as they survive for long enough, then propagate by virtue of the

adaptations they allow. Alberch believes that selection between what he

calls ‘pattern generating systems’ occurred mostly in the pre-Cambrian and

Cambrian periods, and that since then the broad details of development have

been largely fixed.

Kirschner and Gerhart (1998) provide a two-part explanation for the evo-

lution of evolvability. The first part is essentially the congruent hypothesis;

organisms that can tolerate variability in the environment can tolerate the

variability caused by mutations. The second part of their explanation is that

since such individuals can carry more mutations non-lethally, there will be

a greater degree of genetic variance in populations of such individuals. Af-

ter environmental change, extinctions, or the emergence of new niches, such

populations are more likely to contain variants that are well suited to the

environment.

2.4.2 Building evolvability into artificial systems

That evolutionary success depends on the generation of suitable genetic varia-

tion has long been known in the Evolutionary Computation (EC) community.

Every time an evolutionary algorithm is applied to a problem, a practitioner

must explicitly decide how potential solutions will be represented and how

mutation will operate on represented solutions. That is, the practitioner de-

cides how variation will be introduced, and he presumably hopes that the

introduction of variation is such that evolution can solve the problem at hand.

In this sense, every EC researcher and practitioner is concerned with how to

build evolvability into evolutionary algorithms. Therefore, in this section I

will focus on attempts to build the evolution of evolvability into artificial

60

systems, either by co-opting natural explanations like those described in the

previous section, or by more direct means.

Placing the degree of mutational variation under evolutionary control has

been studied by Eiben et al. (1999), mostly from an empirical perspective,

though important theoretical work in this area has also been done (Rudolph,

2001).

There has been experimental work (in simulation) showing that fluctuat-

ing environments, which change over time in some structured way, can lead

to the evolution of evolvability (Turney, 1999; Reisinger and Miikkulainen,

2006; O’Neill et al., 2011). Clune et al. (2013) couple a modularly time-

varying environment with a fitness function which penalizes neural networks

proportionally to the total length of the connections in the network. They

show in simulation that this leads to modularity in the networks that mimics

the modularity of the problem—and hence leads to evolvability.

In recent simulation experiments in artificial life, the underlying encodings

of self-replicators (i.e., the way in which the replicators are encoded in their

heritable genetic information) has been allowed to evolve. The hope is that

more evolvable encodings (with respect to the environment) will emerge.

Many of these simulations were implemented in Avida and its variants. Avida

is an artificial life platform in which assembly-like computer programs self

replicate (Ofria and Wilke, 2004).

Baugh and McMullin (2013) and Hasegawa and McMullin (2013) have,

respectively, designed replicators for the Tierra and Avida self-replication

platforms in which part of the self-replicating program is interpreted as ge-

netic information, and another part is interpreted as a decoding mechanism,

that decodes the genetic information. By allowing both to evolve, the way

that the replicators encode themselves can change over time. Egri-Nagy and

61

Nehaniv (2003) have implemented a variant of Avida in which each replicat-

ing program has its own, different, instruction set, which itself can evolve.

The goal is similar; the way that a replicator’s behaviour is encoded can

change over time, and more evolvable encodings might be discovered.

Webb and Knowles (2014) aimed to study the differing capacities to evolve

evolvability between ‘non-self-encoding’ and ‘self-encoding’ replicators4. In

both cases, each replicator implements a decoder that interprets its genetic

information, and the decoder itself can evolve over time. In ‘self-encoders’,

the decoder determines the way in which it itself is encoded in the genetic

information, as illustrated by Figure 2.7. The authors conclude that there

may be insufficient selection for evolvability in their simulations to distinguish

between the two types of replicator.

Reisinger and Miikkulainen (2006) list some ways in which evolvability

has been allowed to evolve in evolutionary algorithms. For example, Ebner

et al. (2002) study the evolution of evolvability in neutral networks, in which

neighbouring genotypes can encode the same phenotype. Neutral mutations,

whose relevance to evolvability was first outlined by Maynard Smith (1970),

are those that leave the phenotype unchanged, while possibly changing the

phenotypic neighbourhood. Reisinger and Miikkulainen give as other ex-

amples evolutionary algorithms with indirect encodings (Stanley and Mi-

ikkulainen, 2003) and Estimation-of-Distribution algorithms (Pelikan et al.,

2002).

Altenberg (1994) shows that in genetic programming, evolvability can

evolve by the implicit selection of blocks of code for what he calls their ‘con-

structional selection’, or their ability to improve programs in the population

when inserted into them.

4Note that this work is not discussed further within this thesis.

62

There has been surprisingly little effort to directly select for evolvability in

evolutionary algorithms and artificial life simulations. An early suggestion

to incorporate information about evolvability during selection comes from

Reisinger and Miikkulainen (2006). However, the only example that they

give is Estimation of Distribution Algorithms (EDAs) (Pelikan et al., 2002).

I do not believe EDAs select for evolvability in the sense meant in this the-

sis. EDAs use the current population to try to build a probabilistic model

of highly-fit solutions. In a sense, EDAs try to improve the way in which

they search the space of solutions based on the solutions and their fitnesses

observed so far, but they do not attempt to determine the evolvability of

individuals and reproduce those that are more evolvable. I describe research

that is more closely related to my own, in that it studies this kind of selection

for evolvability, in Chapter 6.

2.5 Summary

The purpose of this chapter has been to give an overview of previous thought

on the topic of evolvability in natural and artificial systems. The reader

should now have sufficient background information in order to understand

the work described in Chapters 3 to 5, which is concerned with explicit

selection for evolvability.

We have seen a wide range of definitions and measures of evolvability,

a brief discussion of the factors that might cause one individual to differ in

its heritable evolvability from another, and a range of explanations for the

evolution of evolvability in natural evolutionary systems. We also briefly

discussed previous work that aims to build the evolution of evolvability into

artificial evolutionary systems. We defer until Chapter 6 a discussion of pre-

63

vious work that aims to build explicit selection for evolvability into artificial

evolutionary systems, as this work is closely related to that of Chapters 4

and 5, and warrants a more detailed discussion and comparison.

64

Chapter 3

The Simple Evolvability Model

In this chapter, I study selection for evolvability in what I will call the simple

evolvability model. This work is an extended form of that presented by Webb

et al. (2015). I first introduce the model in Section 3.1, list the assumptions

of the model in Section 3.2, and then answer the question of the extent to

which one should select for evolvability within the model in order to maximize

eventual fitness in Section 3.3. The chapter concludes with a list of the

limitations of the model.

3.1 The Model

In the model we have a population of N individuals, each with two traits

A and B. Trait A is a real-valued number, and trait B is a positive real-

valued number. The A value of an individual represents fitness in some

environment, and as such it is a value to be maximized. The B value of an

individual represents the “evolvability with respect to trait A”; it is the key

factor in determining the rate of increase of A in the course of evolution.

Here, that means that the B value of an individual determines the standard

65

deviation of mutations affecting the A value.

In each generation, we rank the population by the value γA+ (1− γ)B,

where the As and Bs have first been normalized by dividing by the standard

deviations of those traits in the population. The highest-ranking proportion

p become the parents of the next generation; we select with replacement from

the set of parents to form the next generation1. The weighting parameter

γ is under our control, and takes values in the range [0, 1]. This parameter

represents a trade-off between selecting for fitness and for evolvability. The

normalization step describe above is justified in Section 3.A, which is at the

end of this chapter.

After the selection step, we mutate the A and B values as follows. We

add Gaussian noise to each individual’s B value with a constant standard

deviation, β. We add Gaussian noise to each individual’s A value with stan-

dard deviation αB (i.e., a constant times that individual’s B value). Since

standard deviations must be positive, we prevent the Bs from taking nega-

tive values; when a mutation makes a B value negative, we set it to a small

positive value ε.

In each generation, after mutation, the A and B values decay towards

some baseline values. Algorithm 1 describes the process of evolution in this

model. Table 3.1 lists the parameters and their roles.

Our question, stated in terms of the model, is as follows. What value of

the parameter γ maximizes, at some particular future time tend, the expected

mean value of A, the expected mean fitness? I answer this question exactly in

the special case that the population size N = 2 and the proportion selected

as the parents of the next generation p = 1/2. I consider this special case in

1This truncation selection is employed for analytical convenience only. Note that,
depending on the value of the parameter p, this can provide much stronger selection than,
for example, roulette wheel selection.

66

order to remove the effects of indirect selection, as discussed in Section 3.4.

3.2 Assumptions

The simple evolvability model makes the following assumptions.

• Fitness and evolvability can increase without limit, and the probability

distribution over the effect of mutations on fitness and evolvability are

independent of time and of the current fitness and evolvability values.

• Fitness and evolvability mutations are normally distributed, with zero

mean.

• We have perfect knowledge of the evolvability of each individual. In

practice, as discussed in Section 4.1, we would have to rely on estimates

of the evolvability of an individual or lineage, derived from observations

of the effects of past mutations.

• There is no indirect selection for evolvability when selecting for fitness.

I have forced this to be the case by considering only the situation where

a single parent is selected in each generation. In general, with larger

parent population sizes, there would be correlation between fitness and

evolvability. In Chapter 4, where we periodically select between pop-

ulations for an estimate of evolvability, and in between select for fit-

ness within populations, there may be indirect selection for evolvability

within the populations.

67

Algorithm 1 The simple evolvability model

1: Initialize vector A(t = 0) with N elements of value A0

2: Initialize vector B(t = 0) with N elements of value B0

3: for each t← 0..tend do
4: A′ ← A(t)/std dev(A(t))
5: B′ ← B(t)/std dev(B(t))
6: Sort A(t), B(t) by the corresponding value γA′ + (1− γ)B′

7: for each n← 1..N do
8: i← random variate drawn from the discrete uniform distribution

[1, bpNc]
9: MA ∼ N (0, α2B(t)2

i)
10: MB ∼ N (0, β2)
11: A(t+ 1)n ← kA(A(t)i +MA) + (1− kA)RA

12: B(t+ 1)n ← kB(B(t)i +MB) + (1− kB)RB

13: if B(t+ 1)n < 0 then
14: B(t+ 1)n ← ε

3.3 Optimal Constant γ

In this section I find the constant value of the selection trade-off parameter

γ which maximizes the expected eventual fitness value. Since we restrict

ourselves to the special case that the population size N = 2 and the pro-

portion kept during selection p = 1/2 (i.e., there is a single parent in each

generation), we can restate the problem so that we only have to keep track

of one A value and one B value per generation; let A(t), B(t) be the A and

B values of the parent for generation t, with A(0) = A0, B(0) = B0.

In each generation, we duplicate the parent, mutate both copies, and then,

after normalizing by dividing the As and Bs by their population standard

deviations, we select as the parent for the next generation the individual with

the maximum value of γA+ (1− γ)B. Since the parents are identical before

mutation, we are essentially selecting between rival mutations.

The normalization step means that, as far as the selection operator is

concerned, all mutations have a standard deviation of 1. We can achieve

68

Table 3.1: Parameters of the model.

N — The population size. Here we set
N = 2.

p — The proportion of individuals chosen
by truncation selection as parents of
the next generation. Here we set p =
1/2.

A0 — The initial value of the trait A in the
population.

B0 — The initial value of the trait B in the
population. Non-negative.

α — A parameter adjusting the standard
deviation of A mutations. Non-
negative.

β — A parameter adjusting the standard
deviation of B mutations. Non-
negative.

kA — The A decay rate.
RA — The value towards which A decays.
kB — The B decay rate.
RB — The value towards which B decays.
tend — The time at which we want to max-

imize the expected mean value of
A, with respect to the parameter γ.
Positive integer.

γ — A parameter under our control rep-
resenting a trade-off between selec-
tion for the traits A and B. In the
range [0, 1].

φ — An alternative parameter giving the
trade-off between selecting for the
traits A and B. In the range [0, π

2
].

the same result by drawing four ‘normalized’ mutations from the standard

normal distribution N (0, 1). MA1 and MA2 are the normalized mutations

affecting the As, and MB1 and MB2 are the normalized mutations affecting

the Bs. We will then select the pair of mutations with the largest value of

69

γMA + (1 − γ)MB, and multiply each by the desired mutational standard

deviation, undoing the normalization step. We then apply these mutations

to the parent to get the A and B values of the parent of the next generation.

Let 〈M+
A ,M

+
B 〉 be the 〈MA,MB〉 pair with the maximum value of γMA +

(1− γ)MB. That is,

〈M+
A ,M

+
B 〉 = 〈MAm ,MBm〉, where (3.1)

m = argmax
i∈{1,2}

(
γMAi

+ (1− γ)MBi

)
.

The two components in the sum in Equation (3.1) are distributed as

γMA1,2 ∼ N (0, γ2) (3.2)

(1− γ)MB1,2 ∼ N (0, (1− γ)2). (3.3)

Using Equations (3.24) and (3.25) from the Section 3.B, we obtain the ex-

pected values of these components in the pair with the maximum sum, which

are

E[γM+
A] =

γ2√
γ2 + (1− γ)2

√
π

(3.4)

E[(1− γ)M+
B] =

(1− γ)2√
γ2 + (1− γ)2

√
π
. (3.5)

Due to mutation and selection, A will increase by αB(t)M+
A , and B will

increase by βM+
B . These are the ‘un-normalized’ mutations, which have the

70

expected values (taking the expectation over the possible values of M+
A ,M

+
B)

E[αB(t)M+
A] =

γ√
γ2 + (1− γ)2

√
π
αB(t) (3.6)

E[βM+
B] =

1− γ√
γ2 + (1− γ)2

√
π
β. (3.7)

As a result of mutation and selection, A and B each increase by a non-

linear function of γ multiplied by the standard deviation of A and B muta-

tions. This function is shown in Figure 3.1, and is given by

f(γ) =
γ√

γ2 + (1− γ)2
. (3.8)

Figure 3.1: The trade-off between selecting for traits A and B in a population
of size 2. The function f(γ) gives the expected increase in trait A due to
selection, in units of the standard deviation of A mutations. The function
f(1− γ) plays the same role for the expected increase in trait B.

Since αB(t)M+
A and βM+

B represent the change in A and B due to mu-

tation and selection, once we account for fitness and evolvability decay we

obtain the following recurrence relations relating A and B in generation t to

71

generation t+ 1.

A(t+ 1) = kA(A(t) + αB(t)M+
A (t)) + (1− kA)RA (3.9)

B(t+ 1) = kB(B(t) + βM+
B (t)) + (1− kB)RB. (3.10)

The expected value of A(t) and B(t) (now taking the expectation over the

mutation events in every generation) satisfy the recurrence relations

E[A(t+ 1)] = kA(E[A(t)] + f(γ)
αE[B(t)]√

π
) + (1− kA)RA (3.11)

E[B(t+ 1)] = kB(E[B(t)] + f(1− γ)
β√
π

) + (1− kB)RB. (3.12)

In our formulation of the problem so far, we have ranked the population

by γA+(1−γ)B during selection. An alternative and natural parameteriza-

tion, which I will return to, is to rank the population by sin(φ)A+ cos(φ)B,

where φ ∈ [0, π
2
], in which case the normalization term (the denominator of

Equation (3.8)) disappears. The parameter φ is more meaningful than γ,

giving the angle in A − B space that the population moves in as a result

of selection. With this parameterization, the recurrence relations in Equa-

tions (3.11) and (3.12) become

E[A(t+ 1)] = kA(E[A(t)] + sin(φ)
αE[B(t)]√

π
) + (1− kA)RA (3.13)

E[B(t+ 1)] = kB(E[B(t)] + cos(φ)
β√
π

) + (1− kB)RB. (3.14)

Returning to the γ-parameterization, solving the recurrence relations in

Equations (3.11) and (3.12) for E[A(t)] and maximizing the resulting ex-

pression2 with respect to γ yields a single solution in the range [0, 1], which

2This expression was calculated using the Mathematica symbolic computation soft-
ware (Wolfram Research, Inc., 2016) and verified by simulating the evolutionary process

72

is

γ∗ =
3

4
+

1

4

(
z −
√
z + 3

√
z − 1

)
, where (3.15)

z =

√
1 +

8

π
w2, where

w =
βkB

(kB − 1)(− B0(kA−1)(ktB−ktA)

kB+ktB(kA−1)−kA+ktA−kAkBt
+ kBRB)

.

We can get a shorter expression by switching to the alternative φ-parameterization.

In this case, φ = arctan(γ
1−γ), so the optimal value of φ is

φ∗ = arctan(1 +
4

z − 1
) , (3.16)

where z is as defined in Equation (3.15). Note that z(w) takes values in

the range [1,∞), and so γ∗ takes values in the range (1
2
, 1]. In other words,

within this model, it’s never a good strategy to select more for evolvability

than for fitness.

The optimal value of the selection tradeoff parameter, γ∗, does not de-

pend on RA, the value to which fitness decays. We can see that the optimal

value γ∗ decreases with β and increases with B0. In words, for larger ini-

tial evolvability values we should select more for fitness, and with a greater

capacity to increase evolvability through mutation and selection we should

select more for evolvability. The optimal value is a complicated function of

the remaining parameters.

In the case that kB = 1 or RB = 0—i.e., if evolvability does not decay, or

described in this chapter for a large number of parameter settings and comparing the mean
fitness achieved at time t to the value predicted by that expression.

73

it decays towards zero—then in the limit as t goes to infinity

lim
t→∞

γ∗ =
1

2
. (3.17)

That is, unless evolvability decays to a nonzero value, if we care about max-

imizing the expected value of fitness in the extreme long term, then the

optimal value of the selection trade-off parameter is 1
2
.

If evolvability decays towards some non-zero value—if kB 6= 1 and RB 6=

0—then as t goes to infinity

lim
t→∞

w =
β

(kB − 1)RB

. (3.18)

We can see from this that, in the case that evolvability decays towards some

non-zero value, if we care about maximizing the expected value of fitness

in the extreme long term, then the optimal value of the selection trade-off

parameter does not depend on the rate at which fitness decays, but only

upon the standard deviation of evolvability mutations β, the rate at which

evolvability decays kB, and the value towards which it decays RB. We can see

that the long term optimal value decreases, meaning we should select more

strongly for evolvability, if the standard deviation of evolvability mutations

increases. We should select less for evolvability if evolvability decays towards

a larger valueRB, and should select more for evolvability if evolvability decays

more quickly.

In the following I discuss the optimal value γ∗ in the simple case that

kA = kB = 1, i.e., neither evolvability nor fitness decay. In this case, the

optimal value of the trade-off parameter, γ∗, depends only on B0, β, and

tend, and is an increasing function of B0/(β(tend − 1)). Figure 3.2 shows γ∗

as a function of B0/(β(tend − 1)), while Figure 3.3 shows γ∗ as a function of

74

Figure 3.2: The optimal value of the trade-off parameter γ as an increas-
ing function of B0/(β(tend − 1)). As B0 becomes large, the optimal value
asymptotically approaches 1.

Figure 3.3: The optimal value of the trade-off parameter γ as a decreasing
function of β(tend − 1)/B0. As β or tend become large, the optimal value
asymptotically approaches 1/2.

the reciprocal β(tend − 1)/B0. Both are shown so that both asymptotes are

clear.

That γ∗ depends on this quantity makes sense; it is the ratio between

the initial evolvability B0 and βtend, which is related to the amount that

evolvability can increase in the course of evolution in the time given. If the

initial evolvability is large compared to the capacity to increase evolvability,

then it pays off to focus more on increasing the trait A. As we look further

75

to the future and tend becomes large, the initial evolvability value has less of

an effect and γ∗ tends towards 1
2
.

Figure 3.4 shows the optimal value of γ found by grid search and sim-

ulation for a range of values of B0, β, and tend. For each setting of the

parameters, we simulate the evolutionary process of the model for 100 values

of γ evenly spaced between zero and one. We plot the value of γ with the

highest mean value of A at time tend measured over one hundred thousand

trials (the low population size makes the outcome noisy). The simulation

results closely agree with the predicted value obtained here, verifying the

result3.

Figure 3.4: A comparison between the optimal value of γ obtained by grid
search and simulation and the predicted result. The evolutionary process
was simulated for a large number of combinations of values for B0, β, and
tend. For each setting of the parameters, We try 100 values of γ, evenly
spaced between zero and one. The scatter plot shows, for each combination
of parameter values, the value of γ that achieved the highest mean value
(over 100 000 trials) of A at time tend. The line shows the result predicted
by the model.

Figure 3.5 shows, for a particular setting of the parameters, the expected

3There is a small discrepancy, perhaps because our result does not account for the fact
that, after a mutation, we set negative B values to small positive values. This manifests
when B0 is small enough that B is small compared with β in the initial generations.

76

value of A over time for three strategies; setting γ = 1 (so that only A is

selected for), setting γ = 1/2 (so that we select equally for A and B), and

setting γ = γ∗ (the optimal value). It can be seen that the γ∗ strategy dom-

inates. Figure 3.6 shows the same with a different setting of the parameter

β. Note that for the γ∗ strategy, the plots do not show A over time for a

particular value of γ; for each time t, the plot shows the expected value of A

when using the (constant) value of γ that maximizes A(t).

Note that although selecting for an optimally weighted sum of fitness and

evolvability can lead to increased fitness over selecting for fitness alone by a

particular time t—as shown in Figures 3.5 and 3.6—selecting for the weighted

sum will lead to decreased fitness compared with selection for fitness alone

in the short term.

3.4 Limitations and Conclusion

This chapter introduced the simple evolvability model (SEM) in order to

study the extent to which we ought to select for evolvability in order to

maximize long-term fitness. The model assumes that evolvability information

is accurate and comes at no cost in terms of fitness evaluations. The findings

of this chapter are as follows.

1. I obtain an expression for the optimal selection trade-off parameter γ

in terms of the model parameters.

2. The expression reveals that, regardless of the model parameters, it

never pays off to select more for evolvability than for fitness.

3. In the limit that the number of generations goes to infinity—i.e., when

we are concerned with extreme long-term fitness—in the case that

77

Figure 3.5: The expected value of A over time for three strategies for setting
γ. A0 = 0, α = 1, B0 = 1, β = 0.1.

Figure 3.6: The expected value of A over time for three strategies for setting
γ. A0 = 0, α = 1, B0 = 1, β = 1.

evolvability does not decay to some non-zero value, then the optimal

value of the selection trade-off parameter γ goes to 1/2, meaning that

we should select equally for fitness and evolvability.

4. In the case that evolvability does decay to some non-zero value, I derive

an expression for the optimal value of γ in terms of a small subset of

78

the model parameters in order to maximize achieved extreme long-term

fitness.

The assumptions of the model are listed in Section 3.2. In the following

I discuss some of the assumptions and the effect on our conclusions if they

are relaxed.

In the above we study the simple case of a population size of N = 2

to eliminate indirect selection effects. If the population is of size N , and

we produce the next generation by selecting with replacement from the top

proportion p of individuals, ranked by γA + (1 − γ)B, then after the first

generation, the expected increase in traits A and B due to mutation and se-

lection becomes harder to calculate for two reasons. The first is that the trait

variances in the population depend on mutations accumulated over multiple

generations; because more than one parent is selected in each generation

there will be residual variation from the previous generation. This resid-

ual (post-selection) variation will not be normally distributed. The result

is that the traits A and B will no longer be normally distributed, but will

be skewed by an amount depending on the trade-off parameter γ and the

proportion kept during selection p. The trait distributions will change over

time, approaching some equilibrium shape.

The second problem is that, because more than one parent is selected in

each generation, correlation builds up between the A and B values in the

population; individuals selected for having large A values are likely to have

inherited large B values. The result of this correlation is that there is indirect

selection for trait B when selecting for trait A.

Figure 3.7 shows (with N = 100, p = 1/2), as functions of γ, the measured

mean increase in traits A and B during selection in generation 10, in units

of the mutational standard deviation of A and B, respectively, with neither

79

fitness or evolvability decaying, i.e., kA = 1 and kB = 1. Figure 3.8 shows

the same in generation 50. The asymmetry is due to indirect selection for

trait B, and the functions change over time because the population trait

distributions and the correlation between the traits are changing over time.

Compare these with the stationary (in time) and symmetric functions giving

the expected per-generation increase of traits A and B for a population of

size two, shown in Figure 3.1. Without an exact expression for the expected

increase of traits A and B due to selection in a larger population, we cannot

deduce the optimal value of the trade-off parameter γ.

Figure 3.9 shows the optimal value of γ found by grid search and simu-

lation (as in Figure 3.4), with a population size N = 100 and p = 1/2. The

exact predicted result derived for a population size of N = 2 is shown for

comparison.

It would be interesting to see an analysis of this model which incorporates

indirect selection effects.

The model assumes that we know the evolvability of each individual, and

that it doesn’t cost us any fitness evaluations to get that information. In

practice, we can only learn about the evolvability of an individual by sam-

pling from that individual’s offspring fitness distribution, i.e., by producing

offspring from that individual. We can estimate the evolvability of an individ-

ual by calculating the sample standard deviation of the fitness of its offspring.

This estimate is noisy, and the variance of the estimate will depend on the

size of the offspring population.

The increase in evolvability due to mutation and then selection for evolv-

ability, as stated in this chapter, is an overestimate for two reasons; the first

is that part of our fitness evaluation budget must be spent in order to cal-

culate evolvability estimates. The second reason is that due to noise in the

80

Figure 3.7: The function f1(γ) shows the measured mean increase in trait
A in generation 10 in units of the standard deviation of A mutations. The
function g1(γ) plays the same role for trait B. The functions are asymmetric;
there is indirect selection for B when selecting for A. N = 100.

Figure 3.8: The function f2(γ) shows the measured mean increase in trait A
in generation 50 in units of the standard deviation of A mutations. Function
g2(γ) plays the same role for trait B. The functions are not the same as
those for generation 10, and the functions are asymmetric. Compare with
Figure 3.1. N = 100.

evolvability estimates, when we select for evolvability we may select the less

evolvable individual. We will return to these considerations in Chapter 4, in

which the effect of noisy estimates is further explored and new evolvability

selection strategies are proposed. Although this limitation of the model is the

motivation for the work in Chapters 4 and 5, it would be interesting to see an

81

Figure 3.9: A comparison between the optimal value of γ obtained by grid
search and simulation (as in Figure 3.4, with population size N = 100) and
the exact predicted result (with N = 2).

extension of the model in which the cost of obtaining accurate evolvability

estimates is included.

In the analysis above, we were restricted to considering constant values

of the selection trade-off parameter γ. However, the optimal constant value

might be sub-optimal, and we might achieve better eventual fitness values

if we allow γ(t) to vary, being a function of the current generation number

t. There are certain properties we should expect from the optimal value of

the function γ(t); as early increases in evolvability have a greater effect on

eventual evolvability than later increases, and because any early increases

in evolvability will manifest more strongly whenever we are selecting more

strongly for fitness, we might expect γ(t) to be monotonically increasing

with t. Finding the optimal γ(t) might be difficult. Since the problem is

that of obtaining a function which maximizes an expression containing that

function within a sum, the correct approach may be related to the calculus

of variations.

82

The goal in this chapter has been to maximize the expected population

average fitness at time t, and increasing the B value of an individual early

on in the simulation increases the expected mean A value of its surviving

descendants. However, from the point of view of any given individual, having

a large B value is a risky strategy; if an individual produces N offspring, the

probability that all of its offspring have fitness values less than or equal to

the parent fitness minus B
10

is around 0.21 if N = 2, 0.1 if N = 3, and 0.045 if

N = 44. If an individual has an extremely large B value (relative to the rest

of the population), then with probability roughly equal to 0.5N where N is

the number of offspring, none of those offspring will survive. An individual

with a large B value has a greater expected value for the fitness of their

surviving offspring, but also has a greater degree of noise in its offspring

fitnesses and a larger probability that none of its offspring will survive.

4These probabilities are estimates calculated by simulating the process 1000 times.

83

84

Chapter Appendix

3.A Justification for the Normalization Step

In the simple evolvability model, the A and B values used during selection

are normalized by dividing by the population standard deviation of those

values. The reason we include the normalization step is that, without it, as

the variance of one of the traits in the population becomes large, evolution

stops acting on the other trait, regardless of the value of γ. This is illus-

trated in Figures 3.10 and 3.11. These show, for a large population with

normally distributed A and B traits, the expected increase in the population

mean values of A and B if we select the top half (i.e., p = 0.5) by value

γA + (1 − γ)B with γ = 0.5, and where the standard deviation of the A

values is 1 and the standard deviation of the B values is parameterized by

β. Without normalization, as Figure 3.10 shows, the expected increase of

each trait (denoted ∆A and ∆B) is a nonlinear function of both of the trait

standard deviations. As the standard deviation of the Bs, β, tends to in-

finity, the expected increase in trait A due to selection tends to zero. With

normalization, as Figure 3.11 shows, the expected increase of each trait is

proportional to the standard deviation of just that trait.

85

Figure 3.10: Without the normalization step, when we select for A+B, the
expected increase in the mean value of each trait (∆A and ∆B) is a nonlinear
function of the standard deviations of both traits in the population. As the
standard deviation of the Bs, β, tends to infinity, trait A stops being selected
for.

Figure 3.11: With the normalization step, when we select for A + B, the
expected increase in the mean value of each trait (∆A and ∆B) is a linear
function of the standard deviation of just that trait in the population.

3.B The Expected Maximum Values of the

Maximum-Sum Pair

In this section I obtain the result used in order to obtain Equations (3.4)

and (3.5). If we have two random variables A and B both distributed as

86

N (0, σ2), then the maximum of A and B has the expected value

E[max(A,B)] =

∫ ∞
−∞

aφ(a)

∫ a

−∞
φ(b) db da (3.19)

+

∫ ∞
−∞

bφ(b)

∫ b

−∞
φ(a) da db

= 2

∫ ∞
−∞

aφ(a)

∫ a

−∞
φ(b) db da ,

where φ(x) is the pdf of the distribution. This can be understood as follows.

We integrate over the possible values of A, multiplying the probability of

getting that value by the probability that the B value is less than it (i.e., the

probability that the A is the maximum of the pair). For each possibility we

multiply by the value of A to get the expected value. We then do the same

thing for the case where the B value is the greater of the pair. Because A

and B have the same distributions, these integrals are equal, so we evaluate

it once and double the result. Evaluating the integral gives the result

E[max(A,B)] =
σ√
π

. (3.20)

In the previous section we make use of the following result giving the ex-

pected values of the pair of numbers (out of two pairs) that has the maximum

sum. Suppose we have four normal random variables distributed as

A1 ∼ N (0, σ2
A), B1 ∼ N (0, σ2

B)

A2 ∼ N (0, σ2
A), B2 ∼ N (0, σ2

B) .
(3.21)

Let 〈Am, Bm〉 be the 〈A,B〉 pair with the maximum sum. That is,

m = argmax
i∈{1,2}

(Ai +Bi) . (3.22)

87

The expected value of Am is given by

E[Am] = 2

∫ ∞
−∞

∫ ∞
−∞

aφA(a)φB(b)Φ(a+ b) da db, (3.23)

where Φ(a+ b) =

∫ a+b

−∞
φA+B(c) dc ,

and where φA(x) is the pdf of each of A1,2, φB(x) is the pdf of each of B1,2,

and φA+B is the pdf of each of A1 +B1 and A2 +B2.

In words, we integrate over the possible values of A1 and B1, multiplying

the joint probability of getting those values by the probability that the sum

of the other 〈A,B〉 pair takes a value less than A1 +B1, and we multiply by

the A1 value to get its expected value. We then integrate over the possible

values of A2 and B2 (for the case where the sum of the second pair is greater

than the sum of the first), which gives the same integral again. Adding the

two integrals together gives the expected value of Am.

Evaluating the above integral gives the expression5

E[Am] =
σ2
A√

σ2
A + σ2

B

√
π

, (3.24)

and by symmetry the expected value of Bm is

E[Bm] =
σ2
B√

σ2
A + σ2

B

√
π

. (3.25)

5This expression was calculated using the Mathematica symbolic computation soft-
ware (Wolfram Research, Inc., 2016) and verified by simulating the process described in
this section for a large number of combinations of values for σA and σB , and comparing
the exact value obtained for the expected values of the components of the maximum-sum
pair with the mean value obtained in simulation.

88

Chapter 4

Episodic Group Selection for

Evolvability

The previous chapter explores the question of how to select optimally for

evolvability when certain assumptions are satisfied. One assumption of that

chapter is that we know the evolvabilities of individuals exactly. As Sec-

tion 3.4 briefly discussed, in practice we will usually have to rely on an

estimate of the evolvability of an individual calculated from that individual’s

offspring fitnesses. The algorithms compared in this chapter will be given a

fixed budget of fitness evaluations, in order that they may be compared, and

in order to select for an estimate of evolvability an algorithm must use some

of its fitness evaluation budget. Depending on the size of the offspring popu-

lation this estimate can be poor and the result of selecting for poor estimates

of evolvability is that evolvability increases much more slowly.

This chapter describes and evaluates an algorithm that attempts to use

its fixed budget of fitness evaluations more efficiently to calculate and select

for estimates of evolvability. I explore in Section 4.1 how the results obtained

in Chapter 3 are affected by selection for estimates of evolvability that are

89

noisy due to sampling errors. I introduce in Section 4.2 a general strategy,

episodic group selection, in which multiple populations are maintained. Selec-

tion for fitness occurs within those populations, with selection for evolvability

occurring periodically between the populations based on sequences of noisy

evolvability estimates calculated from offspring fitnesses. The novel aspect

of this algorithm is that the sequence of noisy estimates of evolvability are

combined with a model of how evolvability changes over time in order to

produce less noisy estimates. I describe in Section 4.5 some heuristics for de-

ciding when to stop selecting for evolvability—and stop maintaining multiple

populations—in order to use the fitness evaluation budget more efficiently.

I compare the EGS algorithm to selection for fitness alone on four fitness

functions in experiments described in Sections 4.7 and 4.8.

The reader may wish to refer ahead to Chapter 6, which reviews work

that is closely related to that described in this chapter, before or concurrently

with with chapter.

4.1 The Effect of Sampling Noise on Evolv-

ability Selection

In Chapter 3 we consider a selection strategy in which, in each generation,

we select for a weighted sum of fitness and evolvability. We assume in that

chapter that we know the evolvabilities of each individual exactly. In this

section, we consider the consequences for the results obtained in that chapter

if we must select for an estimate of the evolvability of each individual calcu-

lated from its offspring fitnesses. We will consider a modified version of the

model described in Chapter 3, in which we select for a weighted sum of fit-

ness and estimated evolvability, where the true evolvability of an individual is

90

the standard deviation of its offspring fitness distribution and the estimated

evolvability of an individual is the sample standard deviation of the fitnesses

of its offspring. We will find that, unless the offspring population size is very

large, evolvability estimates are noisy, as are rankings of individuals by their

estimated evolvabilities, and so evolvability increases more slowly as a result

of selecting for estimates.

In order to calculate evolvability estimates, we produce a poll offspring

population of size N ′ for each individual, and calculate from it the standard

deviation of the offspring fitnesses. (It is a ‘poll’ offspring population because

the individuals in the population can never be selected for; they are only

used to estimate the evolvability of their parents.) Figure 4.1 illustrates this

selection strategy with a population size of two.

Figure 4.1: The left-hand side of the figure illustrates a population of size two
over three generations. Solid lines represent parent-offspring relationships,
with offspring appearing below parents. In each generation, we create a
‘poll’ offspring population for each individual of size N ′. Each parent is
connected to its poll offspring population in the figure by a dotted line. This
offspring population is used to estimate the evolvability of the parent and is
then discarded. We then select for a weighted sum of fitness and estimated
evolvability.

Under these circumstances, the expected increase of the population mean

91

value of evolvability due to selection as reported in Chapter 3 is optimistic for

two reasons. The first is that because offspring populations are produced to

estimate the evolvabilities of the parents, some of our fixed budget of fitness

evaluations must be used in order to make these estimates; the number of

fitness evaluations per generation has increased from N to NN ′, where N is

the population size and N ′ is the poll offspring population size. The second

reason is that, depending of the poll offspring population size, the evolvability

estimates can be poor.

In Chapter 3, I noted that if we select purely for evolvability by selecting

the maximum from a population size of two, where the two evolvability values

are drawn from a normal distribution with the same mean and with variance

β2, then the expected increase of the population mean value of evolvability

due to selection is 1√
π
β.

What happens if instead of selecting the individual with the greater evolv-

ability, we select the individual with the greater estimated evolvability? The

sample variance of a sample of size N from a normal distribution with vari-

ance σ2 is distributed as

N − 1

σ2
S2 ∼ χ2

N−1 . (4.1)

This shows that a constant (N−1
σ2) multiplied by the sample variance follows a

chi-square distribution with parameter k = N−1 (Knight, 2000, Proposition

2.11). It follows from this that the sample variance itself follows a gamma

distribution as follows.

S2 ∼ Γ

(
N − 1

2
,

2σ2

N − 1

)
. (4.2)

If one individual has evolvability B1 = B and another has evolvability

92

B2 = B + ∆ (with ∆ positive), then the sample variances B̂2
1 , B̂2

2 of fitness

from offspring populations of size N ′ are therefore random variables following

gamma distributions as follows.

B̂2
1 ∼ Γ

(
N ′ − 1

2
,

2B2

N ′ − 1

)
(4.3)

B̂2
2 ∼ Γ

(
N ′ − 1

2
,
2(B + ∆)2

N ′ − 1

)
. (4.4)

We can obtain an expression for the probability p that the second sample

variance is larger than the first by computing the integral

p =

∫ ∞
0

∫ v2

0

f1(v1)f2(v2) dv1 dv2 , (4.5)

where f1 and f2 are the probability density functions of the sample vari-

ances. This is also the probability that the second sample standard devia-

tion is larger than the first, and therefore that the individual with the greater

estimated evolvability—the individual selected—has the greater true evolv-

ability.

This probability is given by

2(N ′−2)

√
π

(
1 +

∆

B

)(N ′−1)

Γ
(N ′

2

)
2F̃1

(
N ′ − 1

2
, N ′ − 1;

N ′ + 1

2
;−
(

1 +
∆

B

)2
)

,

(4.6)

where 2F̃1(a, b; c; z) is the regularized Gaussian hypergeometric function1.

We can see that this probability is a function of two variables: the poll

1This expression was calculated using the Mathematica symbolic computation soft-
ware (Wolfram Research, Inc., 2016) and verified by simulating the process described in
this section for a large number of combinations of the parameters N , B, and ∆. For each
setting of the parameters, over a large number of trials, the proportion of times that the
individual selected has the greater true evolvability value in simulation agrees with the
exact value obtained here for the probability of that being the case.

93

population size N ′ and the ratio ∆
B

between the difference in evolvabilities

and the baseline evolvability. The probability p takes values in the range

[0.5, 1.0). Figures 4.2 and 4.3 show the probability p as a function of N ′ for

three fixed values of ∆
B

. Figures 4.4 and 4.5 show p as a function of ∆
B

for

three fixed values of N ′.

2 4 6 8 10
N'

0.2

0.4

0.6

0.8

1.0

p

Δ/B=0.02

Δ/B=0.1

Δ/B=0.5

Figure 4.2: The probability of correctly selecting the individual with the
greater true evolvability based on an estimate calculated from a population
size of N ′, plotted as a function of N ′ for three fixed values of the relative
evolvability difference between the two individuals.

0 20 40 60 80 100
N'

0.2

0.4

0.6

0.8

1.0

p

Δ/B=0.02

Δ/B=0.1

Δ/B=0.5

Figure 4.3: The same as Figure 4.2, shown over a larger range of N ′.

94

0.00 0.02 0.04 0.06 0.08 0.10
Δ/B

0.2

0.4

0.6

0.8

1.0

p

N'=2

N'=10

N'=100

Figure 4.4: The probability of correctly selecting the individual with the
greater true evolvability, plotted as a function of the relative fitness difference
∆
B

for three fixed values of N ′.

0.0 0.2 0.4 0.6 0.8 1.0
Δ/B

0.2

0.4

0.6

0.8

1.0

p

N'=2

N'=10

N'=100

Figure 4.5: The same as Figure 4.4, shown over a greater range of the relative
fitness difference ∆

B
.

We can see from these plots that, for example, if two individuals have

a relative difference in evolvability of ∆
B

= 0.1, then for a poll population

size of N ′ = 10, we only have a probability of 0.6 of correctly selecting the

individual with the greater true evolvability, despite using a factor of ten

times more fitness evaluations than in the analysis in Chapter 3. Increasing

N ′ by another factor of ten, to 100, increases p to around 0.8.

95

In the limit as ∆
B

goes to infinity, for N ′ ≥ 2, p goes to 1. In words,

as the difference in evolvabilities grows larger, even for small sample sizes

our probability of correctly determining which individual has the greater

evolvability asymptotically approaches 1. In the limit as N ′ goes to infinity,

for any ∆
B
> 0, p goes to 1; any difference in evolvability can be detected if

the sample sizes are large enough. The sample size N ′ required such that

p ≥ p′, for any p′ > 0.5, goes to infinity as ∆
B

goes to zero.

How can we interpret the value of p and its effect on the expected pop-

ulation mean value of evolvability due to selection? If p = 1, then we select

the individual with the greater true evolvability with certainty. If p = 0.5,

then we select randomly with respect to evolvability.

Prior to selection, the mean evolvability of our two individuals is B+ ∆
2

. If

we select correctly with certainty (i.e., p = 1), then the expected evolvability

after selection is B + ∆ and the expected increase in evolvability is ∆
2

. On

the other hand, if we select randomly (i.e., p = 0.5), then the expected

evolvability after selection is B + ∆
2

, and there is no expected increase in

evolvability.

4.2 Episodic Group Selection

The previous section considered a selection strategy like that described in

Chapter 3, modified so that we select for a weighted sum of fitness and

estimated evolvability in each generation, with the estimate being calculated

from a ‘poll’ offspring population. We saw that the offspring population

must be large if the difference between evolvabilities is small in order that

the probability of correctly selecting the individual with the greater true

evolvability is significantly larger than 0.5.

96

Note that the individuals in any given generation are closely related,

and are likely to have similar evolvabilities. This means that, unless the

poll offspring populations are very large (using more of our fixed budget of

fitness evaluations per generation), the probability of selecting the individual

with the greatest true evolvability will be low, and the expected increase of

evolvability due to selection will be close to that when we select randomly,

i.e., zero.

Figure 4.6: Episodic group selection for evolvability estimates. Two popula-
tions of two individuals each proceed through three generations of selection
for fitness alone, followed by one step of group selection, during which the
left-hand population (highlighted by the dashed square) is duplicated to re-
place the other population. The time at which group selection for evolvability
occurs depends upon the evolvability estimation method. These methods are
discussed in Section 4.4.

For that reason, the strategies described in this section do not select for

evolvability in every generation. Instead, they implement episodic group se-

lection (EGS) for evolvability. They maintain K separate populations, select

97

for fitness within each population in each generation by tournament selection

with tournament size k, and periodically select between those populations for

evolvability. During evolvability selection the population believed to have the

greatest evolvability is duplicated to replace the other K−1 populations. The

general strategy is illustrated in Figure 4.6.

The motivation for this kind of strategy is two-fold.

1. If the difference in evolvability between two populations is greater, it

is easier, for a given number of offspring fitness samples, to determine

which has the greater evolvability. If the per-generation change in

evolvability due to mutations in each population is drawn indepen-

dently from the same zero-mean distribution, then the magnitude of

the difference in evolvability between any two populations will grow

like
√
M , where M is the number of generations since the populations

diverged.

2. In every generation, for each of the K populations we produce an off-

spring population of size N (i.e., the next generation). From these off-

spring fitnesses, we can calculate noisy estimates of the evolvabilities

of the parents, and combine these into estimates of the evolvabilities

of each population in that generation. We can combine the sequence

of noisy evolvability estimates obtained since the populations diverged,

along with a model of the changes in evolvability due to mutations, to

produce more accurate evolvability estimates.

The following sections describe the components of this algorithm. Sec-

tion 4.3 describes the measures of evolvability used, and Section 4.4 describes

various methods for producing evolvability estimates. Section 4.5 describes

some heuristics that aim to use fitness evaluations more efficiently. Sec-

98

tion 4.6 describes the fitness functions on which the EGS algorithm will be

tested against selection for fitness alone, and Sections 4.7 and 4.8 describe

the experimental design and report the results of the experiments.

4.3 Evolvability Measures

The previous chapter used a single measure of evolvability; the standard

deviation of fitness of that individual’s offspring. In the experiments in this

chapter, I use that and one other measure, taken from the list of measures

from the literature listed in Section 2.3.

I will use the following notation. The fitness of the jth offspring of in-

dividual i is a random variable denoted F j
i . Since offspring fitnesses are

assumed to be identically and independently distributed, when not referring

to a particular offspring I will sometimes use the notation Fi to refer to the

random variable describing the fitness of an offspring of individual i. A par-

ticular value of F j
i , i.e., a random variate giving the fitness value of an actual,

instantiated offspring of individual i is denoted f ji . The fitness of the parent

individual i is denoted pfi.

In this chapter, I use two measures of evolvability, which I will refer to

as εσ and εmmax. The εσ evolvability measure is the one used in Chapter 3. It

is the standard deviation of the fitness of an individual’s offspring. The true

evolvability of individual i is given by

εσ,i = SD[Fi] . (4.7)

99

We can estimate the εσ,i evolvability of an individual that has n offspring by

ε̂σ,i =
1

c4(n)

√√√√ 1

n− 1

n∑
j

(f̄i − f ji)2 , (4.8)

where f̄ is the mean offspring fitness of individual i, and c4(n) =
√

2
n−1

Γ(n/2)
Γ((n−1)/2)

is a correction term; it makes our evolvability estimate unbiased in the case

that the fitnesses are drawn from a normal distribution (Holtzman, 1950).

The εmmax evolvability measure is the expected maximum difference be-

tween the offspring fitness and parent fitness in an offspring population of

size m. The true value is

εmmax,i = E[maxj∈1..m(F j
i − pfi)] . (4.9)

We can estimate the εmmax,i evolvability of an individual that has m offspring

by

ε̂mmax,i = maxj∈{1,...,m}(f
j
i − pfi) . (4.10)

If individual i has more than m offspring, then we can calculate multi-

ple such estimates in each generation. For example, if individual i has Lm

offspring, we calculate L evolvability estimates. The lth estimate is

ε̂m,lmax,i = maxj∈{(l−1)m+1,...,lm}(f
j
i − pfi) . (4.11)

The experiments in this chapter use the εσ and ε2max evolvability measures.

Some of the evolvability estimation methods described in Section 4.4 combine

a sequence of noisy evolvability estimates to produce a better estimate. For

clarity, I will hereafter refer to evolvability estimates calculated from a single

100

offspring population, as described above, as ‘evolvability observations’, and

I will reserve the term ‘evolvability estimate’ to refer to the output of the

methods described in Section 4.4.

These estimation methods take as input, in each generation, one or more

evolvability observations and the likelihoods of those observations, i.e., the

probability of making that observation as a function of the true evolvability.

4.3.1 Likelihoods

This section gives the likelihood function of an evolvability observation con-

ditional on the true evolvability for each of the evolvability measures εσ and

ε2max. These likelihood functions will be used by the methods described in

Section 4.4.2 to infer true evolvability values from evolvability observations.

One method described in that section uses the exact likelihood function. The

other uses a Gaussian approximation, which we also calculate here.

The εσ evolvability of an individual is the standard deviation of the dis-

tribution of its offspring fitnesses. We make the simplifying assumption here

that the offspring fitnesses are sampled independently from a normal distri-

bution. As we saw in Section 4.1, the sample variance S2 of a normal dis-

tribution with standard deviation σ and with N samples follows the gamma

distribution

S2 ∼ Γ

(
N − 1

2
,

2σ2

N − 1

)
. (4.12)

Through a transformation of variables, we compute the likelihood func-

tion fS(o|εσ = σ) of the uncorrected (biased) sample standard deviation S as

a function of the actually observed value o, conditional on the true standard

101

deviation (the evolvability) being equal to σ as

fS(o|εσ = σ) = 2
3−N

2 oN−2

(√
N − 1

σ

)N−1

exp
(
− (N − 1)

o2

2σ2

)
. (4.13)

A further transformation of variables leads us to the following as the likeli-

hood function of the corrected (unbiased) standard deviation Ŝ.

fŜ(o|εσ = σ) =
2

o
Γ
(
N/2

)N−1
Γ

(
N − 1

2

)(−N)(o
σ

)N−1

exp

(
− Γ(N/2)

γ
(
(N − 1)/2

) o2

σ2

)
.

(4.14)

The mean value of this likelihood function is the true standard deviation,

or true evolvability σ. The variance of the likelihood is

σ2

2

(
(N − 1)

Γ
(
(N − 1)/2

)2

Γ
(
N/2

) − 2

)
, (4.15)

and so if we wish to use a Gaussian approximation to the likelihood—which

may or may not be justified—we can use the Gaussian distribution with this

mean and variance.

The ε2max evolvability of an individual is the expected fitness of the fittest

of two of that individual’s offspring, minus the fitness of the individual. If

we assume that offspring fitnesses are sampled independently from a normal

distribution centred on the parent fitness, then the distribution of ε2max is

the distribution of the maximum of two normally distributed random vari-

ables with equal standard deviation and zero mean. According to Nadarajah

and Kotz (2008), the likelihood function of the measured maximum ε̂2max

as a function of the value o that it takes, conditional on the true standard

102

deviation taking the value σ is

fε̂2max
(o|εσ = σ) = 2φσ(o)Φσ(o) , (4.16)

where φσ(o) and Φσ(o) are the pdf and cdf of the zero mean Gaussian distri-

bution with standard deviation σ.

A change of variables leads us to the likelihood function whose conditional

is in terms of the true ε2max value, rather than the true εσ value. The following

is the likelihood function of the observed maximum ε̂2max in terms of the

actually observed value of the maximum o, conditional on the true value of

ε2max being m.

fε̂2max
(o|ε2max = m) =

1√
2πm

exp
(
− o2

2πm2

)
erfc

(
− o√

2πm

)
, (4.17)

where erfc(x) is the complementary error function. The mean value of the

likelihood function is the true expected value of ε2max, m, and the variance is

(π − 1)m2. When needed, we can use as a Gaussian approximation to the

likelihood the Gaussian distribution with this mean and variance.

It may seem odd to use two different evolvability measures, εσ and ε2max

when, in computing the likelihood functions, we assume that offspring fit-

nesses are normally distributed. In the case that offspring fitnesses are nor-

mally distributed, the two measures are closely related. When εσ takes value

σ, ε2max takes value m = σ/
√
π. The reason for the two separate measures

is that the fitness functions and mutation operators described in Section 4.6

deviate from the assumption of normally distributed offspring fitness values

to varying degrees. Depending on the fitness function, either the εσ or the

ε2max measure may be a better indicator of evolutionary potential.

103

4.4 Evolvability Estimation Methods

In this section I describe three methods for calculating estimates of evolv-

ability to use in the group selection step. As discussed in Section 4.2, there

are two motivating factors for episodic group selection for evolvability. One

is that the evolvabilities of the populations diverge and differences become

easier to detect. The other is that we can combine a sequence of noisy

observations to produce better evolvability estimates. Although all of the

strategies I describe in the following sections take advantage of diverging

evolvability values, not all attempt to combine observations.

4.4.1 Point-estimate estimation method

In this section I describe the point-estimate method for estimating population

evolvabilities, which uses as its evolvability estimate for each population the

most recent evolvability observation. For example, for evolvability measure

εσ, where we are trying to estimate the expected standard deviation of the

fitness of the offspring of a population, this method estimates that by the

sample standard deviation of the offspring population immediately prior to

evolvability selection. The point-estimate method is the only method used

that does not combine the sequence of noisy evolvability observations to

produce better evolvability estimates.

The number of generations between evolvability selection events in this

strategy is fixed at M . Prior to evolvability selection, a poll offspring popu-

lation of size N ′ is produced for each population, and the offspring fitnesses

are used to calculate the evolvability observation. Algorithm 2 describes the

point-estimate method in full, and it is illustrated by Figure 4.7. We take the

mean of the evolvability observations of the parents to calculate the evolvabil-

104

ity estimate of the population. If we have multiple evolvability observations

for a parent, as in the case where we use the ε2max evolvability measure and

the parent has more than two offspring, then the mean of these observations

is taken to be the evolvability estimate of the parent.

Algorithm 2 EGS with a point-estimate of evolvability
1: generation ← 1
2: spent evaluations ← 0
3: initialize K populations of N individuals
4: while spent evaluations < evaluation budget do
5: for each population do
6: produce offspring population of size N by tournament selection,

with tournament size k
7: mutate each offspring
8: pair off offspring, crossover each pair with probability pc
9: replace the parent population with the offspring population

10: spent evaluations ← spent evaluations +KN
11: generation ← generation +1
12: if generation modM = 0 then
13: for each population do
14: produce offspring population of size N ′

15: calculate evolvability observations of parents

16: spent evaluations ← spent evaluations +KN ′

17: replace each population with the population with the greatest es-
timated evolvability

Because the evolvability measures require that an individual has at least

two offspring, the tournament selection method used to select for fitness

within each population ensures that each parent that produces offspring pro-

duces at least two offspring. This tournament selection is described by Al-

gorithm 3.

This estimation method has two parameters; the number of generations

between evolvability selection events, M , and the offspring population size

used to calculate the evolvability estimate, N ′. In each generation between

evolvability selection events, there are KN fitness evaluations, where K is

105

Figure 4.7: Episodic group selection for evolvability estimates using point-
estimates of evolvability. Selection for fitness alone proceeds within each
population for M generations, by tournament selection with tournament size
k. Then, a poll offspring population of size N ′ is produced for each of the K
populations. Evolvability estimates for each population are calculated from
these offspring populations, after which the offspring populations are dis-
carded. The population with the greatest evolvability estimate is duplicated
to replace each of the other K − 1 populations. Each population then goes
through another M generations before the next evolvability selection event.

the number of populations. In a generation in which selection for evolvability

occurs, there are KN ′ fitness evaluations. As we saw in Section 4.1, the

probability of selecting the population with the larger true evolvability value

increases with M and N ′. Since we have a fixed budget of fitness evaluations,

increasing N ′ decreases the number of fitness evaluations that can be used

for selecting for fitness directly and increasing M decreases the number of

times that we can select for evolvability.

Because this estimation method does not combine a sequence of evolvabil-

ity observations to produce a better estimate, it is not expected to perform

as well as the estimation methods described in the following sections.

106

Algorithm 3 Tournament selection

Input: tournament size k, set of N parents
Output: set of N offspring

1: for each j ∈ {0, . . . , N/2− 1} do
2: for each i ∈ {1, . . . , k} do
3: indexi ← Uniform({1, . . . , N})
4: i∗ ← argmaxi∈{1,...,k} parentindexi .f itness
5: offspring2j ← parentindexi∗
6: offspring2j+1 ← parentindexi∗

4.4.2 Sequential Bayesian filtering

In this section and the following sections, I describe methods for estimating

evolvability that combine a sequence of noisy observations made over time

to produce better estimates. These methods model the evolvability of each

of the K populations and the noisy evolvability observations as a state space

model (Murphy, 2012, p. 631).

A state space model is a hidden Markov model in which the hidden state

and observations are continuous. There is a vector representing the hidden

state at time t, zt, and a vector of observations yt. The model can be written

as

zt = g(ut, zt−1, εt) (4.18)

yt = h(zt,ut, δt), (4.19)

where ut is an optional control signal. The transition model function g tells

us how the current state depends on the previous state and the system noise

εt. The observation model function h tells us how our current observations

depend on the current state and the observation noise δt.

In our application, the hidden state zt is the vector of evolvabilities of

the K populations. The observation vector yt is the vector of evolvability

107

observations in generation t. I make the assumption that the evolvability of

each population changes from one generation to the next by adding a value

drawn from a zero-mean normal distribution with variance q2, i.e.,

zt = zt−1 + εt , (4.20)

where εt ∼ N (0, q1k) is a multivariate Gaussian random variable. The like-

lihood of a particular vector yt of observations given the current state zt,

p(yt|zt), depends on which evolvability measure is used. The likelihood func-

tions in Section 4.3 can be used to calculate the likelihood of each observa-

tion, and the likelihood of the vector of observations is the product of the

individual observations.

A common problem of state space models is to infer the current hidden

state zt from the sequence of observations made so far, y1:t. This is known

as the filtering problem. For our application, that corresponds to inferring

the current evolvability values of the K populations from the sequence of

evolvability observations made so far.

I will operate in a Bayesian setting, starting with a prior distribution over

the initial evolvabilities p(z1) and in each generation calculating a posterior

distribution p(zt|y1:t) ∝ p(zt|y1:t−1)p(yt|zt) using Bayes’ rule. I describe

in the following sections two well-known Bayesian filtering algorithms for

calculating this posterior p(zt|y1:t) for a state space model. They are the

Kalman filter and particle filter. Again, in my description of these I closely

follow Murphy (2012). Each of these algorithms maintains a probability

distribution over the current hidden state, and updates that distribution

iteratively in a two-step process.

1. In the predict step, the distribution is updated to account for how the

108

system may have changed between observations. In our case, we simply

add the process noise as described in Equation (4.20), and so become

less certain about the state of the system.

2. In the update step, the distribution is updated to account for the like-

lihood of the most recent observation, and we become more certain

about the state of the system.

In each generation of the EGS algorithm, we calculate an evolvability

observation for each parent in the previous population and use these to up-

date the filter’s probability distribution of the population evolvabilities in the

update step. We make the simplifying assumption that individuals within

the same population have the same evolvability, so that we can then treat

the evolvability observations of the individuals in the population as multi-

ple observations of this population evolvability. This assumption may be

a little strong. However, we can see that the expected within-population

variance of evolvability must be less than the between-population variance

of evolvability. Immediately after we select for evolvability, the within- and

between- population variances of evolvability are the same, since each pop-

ulation contains copies of the same individuals. Until the next evolvability

selection event, evolvability values will follow a random walk. This will cause

the between-population variance of evolvability to grow indefinitely. The

within-population variance will also grow, but towards some finite equilib-

rium value. We can see that this is true by considering the following. The

effect of selection for fitness is that, within each population, all individuals

are descended from a single individual some finite number of generations

earlier. This puts a bound on the number of evolvability mutations that

can have occurred since this most-recent common ancestor, and thus on the

expected variance of evolvability within that population. Once the point

109

is reached that the most-recent common ancestor is found within a genera-

tion that occurs after the previous evolvability selection event, the expected

within-population variance of evolvability is at some equilibrium value below

the between-population variance.

From the current probability distribution over evolvabilities, for each pop-

ulation we can calculate the probability that that population has the highest

evolvability. When this probability exceeds P for one of the populations,

that population is duplicated to replace the other K − 1 populations. What

happens to our probability distribution over the evolvabilities of the K pop-

ulations after one population is duplicated in this way? Since the ith dimen-

sion of this distribution represents our state of belief of the evolvability of

population i, if a particular population j is duplicated to replace all other

populations, then the probability distribution over the evolvabilities should

be modified such that, in all but the jth dimension, the marginal distribu-

tion becomes perfectly correlated with the marginal distribution in the jth

dimension.

The EGS algorithm with evolvabilities estimated by a Bayesian filter is

described in Algorithm 4 and shown in Figure 4.8. Note that we calculate an

evolvability observation for each parent in a population, and these multiple

observations are used to update the filter’s estimate of the population evolv-

ability. Also note that these evolvability observations are calculated prior to

crossover.

In the following sections, I describe how the Kalman filter and particle

filter encode the probability distribution over the current state, how that

distribution is updated during the predict and update steps, and how the

distribution is updated when one population is duplicated replacing all oth-

ers.

110

Algorithm 4 EGS with evolvabilities estimated by a Bayesian filter

1: spent evaluations ← 0
2: initialize K populations of N individuals each
3: while spent evaluations < evaluation budget do
4: update filter to account for evolvability changes between observations
5: for each population do
6: produce offspring population of size N by tournament selection,

with tournament size k
7: mutate each offspring
8: calculate evolvability observations for the parents
9: pair off offspring, crossover each pair with probability pc

10: replace the parent population with the offspring population

11: update filter using evolvability estimates
12: spent evaluations ← spent evaluations +KN
13: if evolvability of any one population exceeds all others with proba-

bility exceeding P then
14: replace each population with the population with the greatest es-

timated evolvability
15: update filter to account for group selection

4.4.3 Kalman filter estimation method

We can derive the posterior probability distribution of a linear Gaussian state

space model exactly (Murphy, 2012, p. 640). A LG-SSM is one such that

zt = Fzt−1 + εt (4.21)

yt = Hzt + δt , (4.22)

where zt is a column vector of size K, F is a K × K matrix, yt is a col-

umn vector of size N , H is a N ×M matrix, and the process noise εt and

observational noise δt are zero-mean multivariate Gaussians with covariance

matrices Q and R.

In this case, if our prior distribution over the initial evolvabilities p(z1)

is Gaussian, then all subsequent distributions over zt conditional on the ob-

111

Figure 4.8: EGS with evolvabilities estimated using sequential Bayesian fil-
tering. The N fitness values of each population in each generation are used to
calculate evolvability observations (i.e., very noisy estimates of evolvability),
which the filter uses along with a model of how the evolvabilities change in
each generation due to mutation to improve its current estimates. Once the
filter believes with greater than probability P that one particular population
has the greatest evolvability, that population is duplicated to replace the
K − 1 other populations.

servations y1:t, p(zt|y1:t), are Gaussian and can be derived using the Kalman

filter algorithm. The Kalman filter—named after Rudolf E. Kálmán, one of

the main developers of the algorithm (Kálmán, 1960)—maintains a vector x

and matrix P giving the mean vector and covariance matrix of the multivari-

ate Gaussian representing our current belief of the state of zt. The predict

step, which accounts for how the system may have changed between obser-

vations, is shown in Algorithm 5, and the update step, which incorporates

information from new observations, is shown in Algorithm 6.

Algorithm 5 Kalman filter predict step
1: x← Fx + But
2: P← FPFT + Q

In our application, the likelihood of the (unbiased) evolvability observa-

112

Algorithm 6 Kalman filter update step
1: ỹ← yt −Hx
2: S← HPHT + R
3: K← PHTS−1

4: x← x + Kỹ
5: P← (1k −KH)P

tion of population i depends only on the true evolvability of population i, so

the matrix R is diagonal, with the variance of the relevant likelihood function

from Section 4.3 filling the diagonal entries. The result is that we update our

state of belief of the population evolvabilities using Gaussian approximations

to the likelihoods of our observations.

Since in our case F = 1k, H = 1k, there is no control signal ut, and we

assume that Q = q1k, these steps simplify to those shown in Algorithms 7

and 8. The predict and update steps of the Kalman filter are illustrated by

Figure 4.9.

Algorithm 7 Simplified Kalman filter predict step
1: P← P + Q

Algorithm 8 Simplified Kalman filter update step
1: ỹ← yt − x
2: S← P + R
3: K← PS−1

4: x← x + Kỹ
5: P← (1k −K)P

Since we select for evolvability when we believe with probability greater

than or equal to P that one population has greater evolvability than all

others, we need to be able to extract this probability from the multivariate

Gaussian. For a multivariate Gaussian of dimensionality greater than two,

there is no closed form expression for this probability. Instead we take m =

113

Figure 4.9: The ellipses represent the one standard deviation contour line
of a two-dimensional Gaussian distribution. The left-hand side shows the
distribution before (solid line) and after (dashed) the predict step of a Kalman
filter. Due to the random element of the process model, we are less certain
about the state of the system after the predict step. On the right-hand side,
the solid line represents our state of belief prior to making an observation.
The dashed line represents the likelihood function. The dotted line represents
our posterior state of belief, incorporating the latest observation.

1000 samples from the multivariate Gaussian and estimate the probability

that population i has the greatest evolvability by

pi =
1

m

m∑
j=1

1(argmax
k∈{1..K}

xkj = i) , (4.23)

where xkj is the kth element of the jth sample from the multivariate Gaussian,

and 1 is the indicator function, equal to one if its argument is true, zero

otherwise. This estimate is the proportion of samples in which population i

has the greatest evolvability.

If this probability is greater than or equal to P for the ith population, then

the ith population is copied to replace each of the other populations. The

Kalman filter is updated after such a duplication as follows. Each element

in the mean vector x is replaced with the value xi, and each element in the

114

covariance matrix P is replaced with the value Pi,i.

How should we infer the value q, the variance of the process model noise?

We could add an extra dimension to our system and infer the value of q, but

we would no longer be dealing with a linear-Gaussian state space model, and

so couldn’t perform exact inference with the Kalman filter. Instead, I use in

each step the current maximum-likelihood estimate of q, which is given by

q̂ =
1

(g − 1)k

g∑
i=2

k∑
k=1

(xki − xki−1)2 , (4.24)

where xki is the kth element of the mean vector of the Kalman filter in gen-

eration i, and g is the total number of generations. The maximum likelihood

value of q is the mean squared difference between our expected value of the

evolvability of a population from one generation to the next.

4.4.4 Particle filter estimation method

The previous section describes the use of the Kalman filter algorithm to pre-

dict the current evolvability of each population from the sequence of evolv-

ability observations so far. In order to use the Kalman filter, we have to

use Gaussian approximations to the likelihoods of the observations and use

a maximum-likelihood value of the process noise variance q. This section

describes the use of a particle filter algorithm to track the population evolv-

abilities. A particle filter is a Monte Carlo (sampling) method for calculating

the probability distribution over the current state of a state space model con-

ditional on all observations so far, without the following restrictions, which

apply to the Kalman filter (Murphy, 2012, p. 823).

• The process model function, which relates the current state to the

previous state, need not be linear.

115

• The observation model function, which relates the current observation

to the current state, need not be linear.

• The process noise and observation noise need not be Gaussian.

• The prior distribution over the initial state p(z1) need not be Gaussian.

This means we can use the exact likelihood functions as given in Sec-

tion 4.3, and to infer the process noise variance q we can add an extra di-

mension to our system rather than using the maximum-likelihood value as

in the previous section.

A particle filter estimates the posterior distribution with a large number

of weighted samples. We start with some prior distribution over the initial

state of the system p(z1), and we take Nsamples samples, or particles, from

this distribution. We associate with each particle a weight, wi for the ith

particle, and initialize each weight to 1
Nsamples

. In our application, the system

is K+ 1 dimensional, with the first K elements of zt giving the evolvabilities

of the K populations and the (K + 1)th element giving the process noise

variance q. The K + 1 dimensional vector xi represents the position of the

ith particle.

As with the Kalman filter, we alternate between predict and update steps.

During the predict step, the cloud of particles moves to account for how the

system may have changed since our last observation. The position of each

particle represents a possible state of the system, and its position after the

predict step depends on the dynamics of the system, the initial position, and

the process noise. During the update step, the likelihoods of our latest evolv-

ability observations are taken into account to adjust the weights associated

with the particles.

116

In our application, during the predict step each particle moves in each of

the first K dimensions by adding noise from a K dimensional multivariate

Gaussian. The ith particle moves in the first K dimensions by adding noise

from a multivariate Gaussian with covariance matrix xK+1
i 1K . We also add

noise to the last element, which represents a possible value of the process

noise variance q, drawn from a Gaussian distribution with small variance, for

reasons which are explained below.

If the evolvability measure in use is εσ, after the predict step we prevent

any particle from taking a negative value in the first K dimensions, and we

always prevent particles from taking negative values in the (K+ 1)th dimen-

sion. This is because these variables represent possible standard deviation

parameters. They are prevented from taking negative values by setting any

negative values to the small positive value 0.001. The weights are left unaf-

fected during the predict step. This predict step is described by Algorithm 9

and is illustrated in Figure 4.10.

Algorithm 9 Particle filter predict step

1: for each particle i do
2: for each j ∈ {1..K} do
3: xji ← xji +X,X ∼ N (0,xK+1

i)

4: xK+1
i ← xK+1

i +Q,Q ∼ N (0, 0.01)

During the update step, given our evolvability observations for the current

generation yt, we calculate for each particle the likelihood of having made

that observation if the system were in the state that the particle represents.

To do so, we calculate

p(yt|xi) =
K∏
j=1

p(yjt |x
j
i) , (4.25)

117

Figure 4.10: Each solid point represents a possible value for the evolvability
of a population, z1, and the process noise variance q. Each unfilled point
represents the position of the same particle after the predict step. These
values are obtained by adding Gaussian noise with fixed, small standard
along the q axis (illustrated by the fixed length vertical lines), and Gaussian
noise with standard deviation

√
q on the z1 axis (illustrated by the variable

length horizontal lines, which are longer towards the top of the figure).

which is simply the product of the likelihood functions p(yjt |x
j
i) of the obser-

vations for each population as given in Section 4.3. We multiply each weight

wi by the corresponding likelihood, and then normalize such that the sum of

the weights is equal to one, as shown in Algorithm 10. Although in practice

it is better to work with log-likelihoods to avoid problems of overflow and

underflow, in the presentation here we work with likelihoods for clarity.

Algorithm 10 Particle filter update step

1: for each particle i do
2: wi ← wip(yt|xi)
3: w← w/

∑Nsamples

i=1 wi

118

After the update step, the particles are still samples from the distribution

representing our state of belief prior to making the observations. However,

the particles and the weights together represent a weighted sample from the

posterior distribution p(zt|y1:t). We can calculate an estimate of any statistic

of the posterior using the weighted samples. For example, our estimate of

the expected value of the evolvability of the jth population is given by

x̂j =

Nsamples∑
i=1

wix
j
i . (4.26)

Note that inference on the process noise variance q is indirect, since we

never observe q directly. After several predict-update iterations, it will be

the case that the majority of particles have weights close to zero, and that

we have very few particles in the regions of state space with non-negligible

probability density, leading to large sampling errors. The solution is to re-

sample such that we obtain unweighted samples from the posterior. To do so,

we repeatedly sample each particle proportionally to its weight. There are

several ways that this resampling can be done. As part of the EGS algorithm

it is done by systematic resampling. During systematic resampling, first we

calculate the cumulative sums of the weights wi,

ci =
i∑

j=1

wj . (4.27)

We then sample Nsamples from [0, 1], but do so in such a way that the

samples are uniformly spaced. This is done by drawing the first sample s1

uniformly from [0, 1/Nsamples], and then setting the si+1 = si + 1/Nsamples.

The new ith particle is a duplicate of the old jth particle if and only if

ci ≥ si > ci−1, where c0 = 0. This process is illustrated by Figure 4.11 and

119

described by Algorithm 112.

Algorithm 11 Particle filter systematic resampling

1: r ∼ Uniform([0, 1])
2: for each i do
3: pi ← 1/Nsamples + r
4: ci ←

∑i
j=1 wj

5: i, j = 1, 1
6: while I ≤ Nsamples do
7: if pi < cj then
8: ith new particle is duplicate of jth old particle
9: i← i+ 1

10: else
11: j ← j + 1

Figure 4.11: Systematic particle resampling in the case that we initially have
six particles with the first weight w1 = 0.5, and the other weights equal to
0.1. After sampling six times from [0, 1] such that our samples are uniformly
spaced, and creating duplicates of the particles whose cumulative weights
corresponds to the samples, we have three duplicates of the first particle,
one of the second, one of the fourth, and one of the fifth, with each weight
set to 1

6
. The third and sixth particles were not resampled, and have been

discarded.

We could perform resampling after every update step. However, to reduce

the computational cost and reduce the sampling error, a common heuristic

is to calculate the so-called effective sample size seff =
∑

i
1
w2

i
. We resample

only if seff < Nsamples/2.

The reason that noise is added to the q dimension during the predict step,

even though the true value is stationary, is that otherwise, after many update-

resample iterations, every particle would have the same q value, whichever

gave the highest likelihood of the sequence of observations; we could never

get any closer to the true value of q.

2This algorithm is taken from a tutorial provided by Labbe (2016)

120

The whole process of sampling particles from a prior, updating the weights

of those particles according to the likelihood of an observation, and then

resampling such that the particles are unweighted samples from the posterior,

is illustrated by Figure 4.12.

Figure 4.12: The whole process of sampling, updating weights, and resam-
pling. First we sample particles from our prior distribution. Then we update
the weights (illustrated by the particle sizes) according to the likelihood of
an observation. Finally we resample such that the particles are unweighted
samples from the posterior. For clarity, the resampled particles are shown
stacked vertically where they are in the same location. The exact posterior,
which the particle filter algorithm does not calculate, is shown below the
resampled particles for comparison.

Our evolvability selection method requires that we are able to extract

from our posterior distribution the probability pi that the ith population has

121

greater evolvability than any other population. We calculate this by

pi =

Nsamples∑
j=1

wj1(argmax
k∈{1..K}

xkj = i) . (4.28)

If this probability pi is greater than or equal to the certainty threshold pa-

rameter P , then we replace each population with a copy of population i.

Each particle is updated after this duplication such that xkj ← xij for all

k ∈ {1..K}, for all j.

4.5 Termination Heuristics

In this section I describe optional heuristics for improving the efficiency of the

EGS algorithm. Recall that in the EGS algorithm, K populations are main-

tained. In each generation, KN fitness evaluations are spent, where N is the

population size within each population. After M generations, MNK fitness

evaluations have been expended in total. Within the lineage that has been

successful (i.e., that has survived each evolvability selection step) only MN

fitness evaluations have been expended—the same number expended during

M generations when selecting for fitness alone. The remaining MN(K − 1)

fitness evaluations are used to measure and select for evolvability, and do not

contribute to increasing fitness directly. For group selection for evolvability

to be effective, the eventual fitness gain due to increased evolvability must

more than compensate for the fact that the algorithm has a factor of K fewer

fitness evaluations to use in directly selecting for fitness.

Note that differences in evolvability lead to differences in fitness only after

a delay, and that increases in evolvability in early generations have more of an

impact on eventual fitness than later increases in evolvability, if the increases

122

in evolvability persist. These observations motivate the following termination

heuristics, according to which—once a certain condition is satisfied—we stop

selecting for evolvability and maintain only one population thereafter.

• According to termination heuristic 1, selection for evolvability stops

when half of the total budget of fitness evaluations has been expended.

• According to termination heuristic 2, selection for evolvability stops

when the number of fitness evaluations since we last selected for evolv-

ability is more than one tenth of the remaining fitness evaluation bud-

get.

4.6 Fitness Functions

In the experiments reported in this chapter, episodic group selection for evolv-

ability is compared to selection for fitness alone on four fitness functions. This

section describes those fitness functions. The fitness functions have been de-

signed such that experiments can go on indefinitely; they are either open

ended, such that fitness and evolvability can increase without limit, or they

vary over time such that the fitnesses and evolvabilities of individuals (in the

absence of selection) decrease over time. This is so that we can compare the

final average population fitness for each algorithm. Each of the time-varying

fitness functions depends upon a fitness function rate of change parameter

δ, which determines the rate at which the fitness function changes. Fitness

function changes are triggered every N fitness evaluations, where N is the

number of individuals within each population.

123

4.6.1 Fitness function 1: simple evolvability model

The simple evolvability model (SEM) fitness function is simply the model

described in Chapter 3, with the decay parameters kA = 1, kB = 1; neither

fitness nor evolvability decay over time.

To recap, in this model each individual consists of two numbers, A and

B. The fitness of an individual is its A value. During mutation, we add

Gaussian noise to the A value with standard deviation B, and add Gaussian

noise to the B value with constant standard deviation β.

If the evolvability type is εσ, then the B value of an individual corresponds

exactly to its evolvability. If the evolvability type is ε2max, then evolvability

is proportional to the B value. In either case, in these experiments the B

value is not used during selection; evolvability must be estimated from the

offspring fitness distributions.

This is the only one of the four fitness functions that does not change over

time; because the fitness function is open ended in the sense that fitness and

evolvability can both increase without limit, there is no need for the fitness

function to change over time in order that there still be fitness differences

between the algorithms at the end of the experiment.

4.6.2 Fitness function 2: mask matching

The mask matching (MM) fitness function is modified from a paper by Turney

(1999). In that paper, this fitness function is used in order to demonstrate

indirect selection for evolvability in an environment that changes over time.

Each individual consists of two strings of 100 bits, a primary bit string

and a mutation mask. The primary bit string is compared to a target bit

string, and the fitness of an individual is the number of bits that match the

124

target. This is illustrated in Figure 4.13.

Figure 4.13: In the mask matching problem, the fitness of an individual is
the number of bits in its primary bit string that match the target. A black
square indicates a one, a white square a zero.

The second bit string of an individual is the mutation mask. It indicates

which bits in the primary bit string are able to mutate. During mutation,

each bit of the primary bit string flips with probability 0.01 unless the cor-

responding bit in the mutation mask is set to zero. Each bit in the mutation

mask flips during mutation with probability 0.005. This is illustrated in

Figure 4.14.

Figure 4.14: The mutation mask determines which bits of the primary bit
string are able to flip during mutation. A bit may only flip if the correspond-
ing bit in the mutation mask is set to one.

During a fitness function change event, the target changes by a small

amount. In the paper by Turney (1999) each bit of the target could change,

so that the most evolvable individuals, i.e., those where the way in which their

descendants will vary corresponds to the ways in which the fitness function

might vary, would have a mutation mask in which every bit is set to one.

125

Here we modify the fitness function so that there is also a target mutation

mask, which varies over time. This modifies the way in which the target

changes over time in the same way that the mutation mask of an individual

modifies the mutations that it can undergo.

Each bit of the target flips with probability 0.01δ unless the corresponding

bit of the target mutation mask is set to zero, where δ is the fitness function

rate of change parameter. Each bit of the target mutation mask flips with

probability 0.002δ.

Although its not clear exactly how the mutation mask and the target

mutation mask will jointly determine the evolvability of an individual, we

can see how mismatches between the two can decrease the evolvability of

an individual whose primary bit string is close to the target; if the mutation

mask equals zero where the target mutation mask equals one, then the target

can change in ways that the individual cannot follow. On the other hand, if

the mutation mask equals one in many locations where the target mutation

mask equals zero, then the probability of successfully tracking changes in the

target decreases due to a high probability of mutations that cannot move the

bit string closer to the target.

That the target mutation mask changes over time means that, in the

absence of mutation and selection, evolvability will decay.

4.6.3 Fitness function 3: symmetry matching

The symmetry matching (SM) fitness function is modified from a paper by

Reisinger and Miikkulainen (2006). In that paper, like the fitness function

described in the previous section, this fitness function is used in order to

demonstrate indirect selection for evolvability in an environment that changes

over time.

126

Each individual consists of a string of 100 bits and a single real-valued

number. There is a target bit string, and the fitness of an individual is

the number of bits that match the target, as in the mask matching fitness

function.

The real-valued parameter, the symmetry probability psym, gives the prob-

ability that mutations affecting the bit string will be symmetric. During mu-

tation, with probability 1− psym, mutations will be asymmetric; each bit of

the bit string will flip with probability p = 0.01. Otherwise, with probability

psym, mutations will be symmetric; each symmetric pair of bits will flip with

probability 0.01. This is illustrated in Figure 4.15. Then, the symmetry

probability parameter is mutated by adding a value drawn uniformly from

[−0.05, 0.05], and then capping the value of the parameter at 0 or 1 if it falls

outside of the range [0, 1].

Figure 4.15: The symmetry probability parameter psym determines the prob-
ability that mutations affecting the primary bit string occur symmetrically.
Each bit or symmetric pair of bits will flip with low probability.

During a fitness function change event, the target changes by a small

amount. In the paper by Reisinger and Miikkulainen (2006) the changes to

the target are always symmetrical, so that the most evolvable individuals

would be those whose symmetry probability parameter is set to 1 (assuming

the bit string of the individual is already symmetrical). Here, we modify the

127

fitness function so that there is also a target symmetry probability parameter

ptargetsym , which varies over time. This modifies the way in which the target

changes in the same way that the symmetry probability parameter of an

individual modifies the mutations that it can undergo.

Each bit or pair of bits of the target flips with probability pδ = 0.01δ,

where δ is the fitness function rate of change parameter. The parameter

ptargetsym determines whether these mutations are symmetrical in the same way

as illustrated in Figure 4.15. We change the target symmetry probability

parameter by adding a value drawn from [−0.05δ, 0.05δ] and capping the

values in the range [0, 1].

What value of psym should we expect to maximize the evolvability of

an individual? Consider an individual whose bit string matches the target.

With probability 1 − ptargetsym , the changes to the target are asymmetrical,

and each of the N bits flip with probability pδ. We’ll restrict ourselves to

the case that at most one bit flips, since this is the most likely case for

very small pδ. An individual which doesn’t undergo symmetrical mutations

will have a bit string which matches the target if only that same bit flips,

which occurs with probability p(1 − p)N−1. An individual which undergoes

symmetrical mutation cannot have its bit string match the target in this

case. If instead the changes to the target are symmetrical (which occurs

with probability ptargetsym), and we restrict ourselves to the most probable case

that a single pair of bits flip, then if the individual mutates asymmetrically,

exactly those two bits must flip in order that the bit string matches the

new target, which occurs with probability p2(1− p)N−2. On the other hand,

if the individual mutates symmetrically, then this occurs with probability

p(1−p)N/2−1, which is much more probable. We see that if the target changes

symmetrically, individuals which mutate symmetrically are much more likely

128

to reach the target as a result of mutations, whereas if the target changes

asymmetrically, only individuals which mutate asymmetrically can reach the

target as a result of mutations. We can calculate from the above that the

value of psym that maximizes an individual’s probability of tracking the target

in a single generation is 1 if ptargetsym exceeds a certain threshold (depending

on p and N) and 0 otherwise. That threshold value is in Figure 4.16 plotted

against N for the case where each bit flips with probability p = 1
N

. We can

see that for N = 100, the optimal value of psym is 1 if ptargetsym > 0.38, and

0 otherwise. Of course, this is a short-sighted analysis; an individual with

psym = 1, i.e., that can only mutate symmetrically, has increasing probability

over generations of encountering a change in the target that it can not recover

from if ptargetsym < 1.

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0
psymtarget threshold

Figure 4.16: For bit strings of length N with a per bit mutation probability
of p = 1

N
, an individual maximizes its probability of tracking a single change

in the target if psym = 1 if ptargetsym is above the threshold value shown, 0
otherwise.

That the target parameter changes over time means that, as with the

previous fitness function, evolvability will decay over time.

129

4.6.4 Fitness function 4: modularly-varying pattern

recognition

The modularly-varying pattern recognition (MVPR) fitness function is taken

from Clune et al. (2013). In their paper, this fitness function is used to show

that a combination of a modularly-changing environment and the penaliza-

tion of highly-connected neural networks leads to selection for evolvability.

Each individual consists of a neural network with eight input neurons,

two hidden layers with four and two neurons respectively, and one output

neuron. Each neuron uses a tanh activation function. The output from layer

l of the network can be represented by the vector

al = tanh(20(WTal−1 + b)) , (4.29)

where W is the matrix of weights and b the vector of biases. The output of

the final layer is taken through a step function, such that the output is 1 if

the input is positive, 0 otherwise.

The network weights take values from {−2,−1, 0, 1, 2}, initialized ran-

domly. In each generation, each network is mutated as follows. With prob-

ability 0.2, a non-zero weight is set to zero. With probability 0.2, a zero

weight is set to a non-zero value in {−2,−1, 1, 2}. Each non-zero weight is

modified with probability 0.01 by incrementing or decrementing with equal

probability, skipping zero.

The neural networks are to perform a pattern recognition task which

switches between two related tasks over time in a modular way. There are

eight left objects and eight right objects, as shown in Figure 4.17. Each of

these objects represents a string of four bits. Whichever task the network is

performing, it must determine whether its left-most four inputs contain a left

130

object, and it must determine whether its right-most four inputs contain a

right object. The two related tasks are as follows; during the L-AND-R task,

the network must determine whether its inputs contains both a left object and

a right object. During the L-OR-R task, the network must determine whether

its inputs contains either a left object or a right object. These related fitness

functions are illustrated in Figure 4.18, and Figure 4.19 illustrates a network

giving a correct output for the L-OR-R task, but an incorrect output for the

L-AND-R task.

Figure 4.17: The eight left objects and eight right objects of the modularly-
varying pattern recognition problem. Each represents a pattern of four bits.

The fitness of an individual is, for each of the possible 28 binary input

patterns, the number of times the network gives the correct output for the

current task.

During a fitness function change event, the task switches with probability

1

1 + exp(−δ)
− 1

2
, (4.30)

where δ is the problem rate of change parameter. This function is shown

in Figure 4.20. The sigmoid function ensures that this probability is mono-

tonically increasing with δ but cannot exceed 0.5. The probability is in the

range [0, 0.5). This fitness function differs from the previous two in that the

131

Figure 4.18: For the L-AND-R task, the network must determine whether
the left-most four bits contain a left objects and the right-most four bits
contain a right object. For the L-OR-R task, the network must determine
whether its input contains a left object or a right object. For the specified
input, the correct answer is ‘no’ for the former and ‘yes’ for the latter.

fitness function changes drastically periodically, rather than gradually.

Evolvable networks for this problem are those that are modular, such that

one part of the network determines whether there is a left object, another

part of the network determines whether there is a right object, and a small

part of the network (in the later layers) performs the logical-AND or logical-

OR operation. Such networks can adapt quickly when the task changes, as

they only need to change the small part of the network dealing with the

logical operation. Networks where the various functions are spread across

the network cannot adapt so quickly when the task changes.

Clune et al. (2013) found that penalizing networks for their total connec-

tion length, i.e., proportionally to the number of connections with non-zero

weights, leads to modular and therefore evolvable networks.

132

Figure 4.19: A network and its output for the specified input. The network
has given the correct output for the L-OR-R task.

4.6.5 Crossover

Crossover is defined on the simple evolvability model (SEM), the mask match-

ing problem (MM), and the symmetry matching problem (SM). For each of

these problems, an individual has two traits. Depending on the problem, the

traits may be two real numbers, two binary strings, or one of each. Crossover

is undefined on the modularly-varying pattern recognition (MVPR) problem.

Crossover takes two individuals as input and produces two individuals as

output. With probability 0.5 the first trait is crossed, otherwise the second

trait is crossed. The non-crossed trait is transmitted unchanged. Real-valued

traits are crossed using simulated binary crossover, a popular method intro-

duced by Deb and Agrawal (1994). The probability distribution f(β) of the

parameter β from Algorithm 13 for simulated binary crossover is shown in

Figure 4.21. One property of simulated binary crossover is that the mean

value of the trait for the two individuals is the same before and after crossover.

Binary strings are crossed by choosing a locus in the string at random,

with the string of one individual being composed of the section of the first

original string before the crossover point concatenated with the section of the

133

0 2 4 6 8 10
δ

0.1

0.2

0.3

0.4

0.5
Switch probability

Figure 4.20: The probability that the pattern recognition task switches from
L-AND-R to L-OR-R or vice versa during a fitness function change event,
as a function of the problem rate of change parameter δ. The probability
increases with δ and lies in the range [0, 0.5).

second original string after the crossover point, and the string of the other

individual being composed of the reverse.

Algorithm 12 describes the crossover procedure. Algorithm 13 describes

the simulated binary crossover procedure for real-valued traits. Note that

in the SEM problem, the second real-valued trait represents a standard de-

viation parameter, and so it must be positive, and in the SM problem, the

second trait represents a probability, so it must be in the range [0, 1]. Af-

ter performing simulated binary crossover, any trait value falling below the

allowed minimum value is set to that minimum value, and any value falling

above the allowed maximum value is set to that maximum value. Algo-

rithm 14 describes the crossover procedure for binary strings.

134

Algorithm 12 Crossover

Input: two parents p1, p2, each consisting of a pair of traits
Output: two offspring o1, o2, each consisting of a pair of traits

1: U ∼ Uniform(0, 1)
2: if U < 0.5 then
3: 〈o1

1, o
2
1〉 ← cross(p1

1, p
2
1)

4: 〈o1
2, o

2
2〉 ← (p1

2, p
2
2)

5: else
6: 〈o1

2, o
2
2〉 ← cross(p1

2, p
2
2)

7: 〈o1
1, o

2
1〉 ← (p1

1, p
2
1)

Algorithm 13 Simulated binary crossover

Input: two real-valued parent traits p1, p2

Output: two real-valued offspring traits o1, o2

1: U ∼ Uniform(0, 1)
2: if U ≤ 0.5 then
3: β = (2u)1/3

4: else
5: β = 1

(2(1−u))1/3

6: o1 = p1+p2
2
− β

2
(i2 − i1)

7: o2 = p1+p2
2

+ β
2
(i2 − i1)

Algorithm 14 Binary string crossover

Input: two binary vector parent traits, p1, p2

Output: two binary vector offspring traits, o1, o2

1: U ∼ Uniform{1, . . . , 100}
2: for each i ∈ {1, ..., 100} do
3: if i < U then
4: o1

i ← p1
i

5: o2
i ← p2

i

6: else
7: o1

i ← p2
i

8: o2
i ← p1

i

135

0.5 1.0 1.5 2.0

β

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(β)

Figure 4.21: In simulated binary crossover, the trait of one individual be-
comes the mean value of the uncrossed trait minus β/2 times the difference
of the uncrossed traits. The other becomes the mean value plus β/2 times
the difference. The probability density function over β is as shown.

4.7 Experimental Design

I run separate experiments for each of the three evolvability selection meth-

ods, using the point-estimate method, or a Kalman filter or particle filter to

estimate population evolvabilities, and for each of the four fitness functions.

I compare each evolvability selection method to selection for fitness alone.

Each algorithm, including selection for fitness alone, receives the same budget

of fitness evaluations, and shares the parameters in Table 4.1. Each evolvabil-

ity selection method shares the parameters in Table 4.2. The point-estimate

method has the additional parameters in Table 4.3, and the Bayesian filter

methods have the additional parameter in Table 4.4.

The right-hand column in each of these tables displays the probability

distribution from which the parameters are sampled. I sample 10 000 times

from these parameter distributions, each time running a single trial of the

experiment with the sampled parameters. For each trial I record the relative

eventual fitness and the relative eventual evolvability. The relative eventual

136

fitness is the mean fitness (averaged over all individuals) in the final genera-

tion of the EGS algorithm, minus the mean fitness achieved by selection for

fitness alone.

I record eventual evolvability as follows. After the final generation of

the algorithm, the fitness function is modified in such a way to ensure that

individuals will be far from the optimal fitness value, without affecting their

evolvabilities. For the SEM fitness function, no change occurs, since there is

no global optimum. For the MM and SM fitness functions, this is achieved by

performing 1000 fitness function change events as described in Sections 4.6.2

and 4.6.2, but modified such that only the primary bit string changes; the

mutation mask and the symmetry probability parameter do not change. For

the MVPR fitness function, this is achieved by performing a single fitness

function change event with large δ, ensuring that the task to be performed

changes. We then record the mean fitness before and after ten rounds of

mutation and selection. The difference between the two values is the eventual

evolvability. The relative eventual evolvability is the difference between the

value achieved by the EGS algorithm and selection for fitness alone.

Table 4.1: Parameters shared by all algorithms, and the distributions they
are sampled from.

Fitness evaluations E ∼ Uniform({1000, 1500, . . . , 10000})
Population size N ∼ Uniform({2, 4, 6, . . . , 100})
Tournament size k ∼ Uniform({2, 4, 6, . . . , N})

Problem rate of change δ ∼ Uniform([0, 2])
Crossover probability pc ∼ Uniform({0, 0.7})

My aim is to identify regions of the parameter space which cause selec-

tion for evolvability to lead to increased eventual fitness or evolvability over

selection for fitness alone, and to calculate the probability that the identified

137

Table 4.2: Parameters shared by all evolvability selection methods, and the
distributions they are sampled from.

Evolvability type ε ∼ Uniform({εσ,ε2max})
Heuristic H ∼ Uniform({0, 1, 2})

Number of populations3K ∼ Uniform({2, . . . , 5})

Table 4.3: The additional parameters of the method that uses point estimates
of evolvability.

Point estimate population size N ′ ∼ Uniform({N, 2N, 3N, . . . , 10N})
Generations between selection M ∼ Uniform({5, 6, 7, . . . , 50})

regions of parameter space really do lead to increased relative eventual fit-

ness or evolvability. To do this, I split the collected data randomly into two

evenly sized datasets.

I use the first dataset to train two decision tree classifiers. A decision tree

classifier is a machine learning model to predict to which class an example

data point belongs based on some number of features (Breiman et al., 1984;

Quinlan, 1993). In this case, the classes in question are whether the relative

eventual fitness (for the first classifier) or evolvability (for the second) is

positive or negative. Figure 4.22 shows an example decision tree classifier

used in this part of the data analysis. For example, the bottom two leaves on

the left-hand side of the figure say that (given the decisions made above) a

population size of greater than twenty-five leads to a prediction of a positive

relative eventual fitness value, whereas a value less than or equal to twenty-

five leads to a negative prediction.

3We only try K up to a value of 5 because a larger number of populations would put
the EGS algorithm at an extreme disadvantage compared with selected for fitness alone
due to the drastically increased number of fitness evaluations per generation.

138

Table 4.4: The additional parameter of the methods that use a Bayesian
filter to estimate evolvability.

Certainty threshold P ∼ Uniform([0.6, 1.0])

Termination heuristic type <= 0.5
5094

[2547.0, 2547.0]
negative

Termination heuristic on <= 0.5
3442

[1874.1427, 673.9754]
negative

True

Generations between evolvability selection <= 16.5
1652

[672.8573, 1873.0246]
positive

False

1692
[963.4354, 43.1031]

negative

Population size <= 25.0
1750

[910.7072, 630.8723]
negative

394
[174.2322, 352.6615]

positive

1356
[736.475, 278.2108]

negative

451
[213.2052, 309.5585]

positive

Fitness evaluations <= 4750.0
1201

[459.6521, 1563.4662]
positive

514
[182.8292, 764.1]

positive

Tournament size <= 23.0
687

[276.8229, 799.3662]
positive

373
[158.1845, 380.0908]

positive

314
[118.6384, 419.2754]

positive

Figure 4.22: An example decision tree classifier, classifying the relative even-

tual fitness on the SEM problem when using a point estimate of evolvability.

Decision trees are highly interpretable. This means that we can see why

the tree has made a particular decision. In this case, the tree allows us to

see what are the important features of regions of the joint fitness function

and algorithm parameter space which mean that selection for evolvability

will lead to increased eventual fitness or evolvability compared to selection

for fitness alone. I use the decision tree implemented in scikit-learn, a free

machine learning library for Python (Pedregosa et al., 2011), which uses

an optimized version of the CART algorithm (Breiman et al., 1984). The

parameters used in the decision tree are the default values, except that the

classes are weighted inversely proportionally to the class frequencies in order

139

to handle class imbalances, and the tree is prevented from creating leaf nodes

that contain a lower proportion than 0.1 of the data points, weighted by the

class weights. This last modification is to prevent overfitting.

The next step is to calculate a degree of belief that the two decision trees

have identified regions of the parameter space in which relative eventual fit-

ness or evolvability, respectively, really are positive. Once the tree has been

built, the second dataset is passed through the decision trees, which aim

to predict whether the relative eventual fitness or evolvability is positive or

negative. For each of fitness and evolvability, this second dataset is then

split into two groups, according to whether the corresponding decision tree

predicts a positive or negative value. I then perform a Bayesian alterna-

tive to a t-test to calculate the probability that the two groups come from

distributions with different true mean values (Kruschke, 2013).

This method involves modelling the two groups of data as coming from

two t-distributions, with mean parameters µ1 and µ2, standard deviation pa-

rameters σ1 and σ2, and a shared degrees of freedom or ‘normality’ parameter

ν. We use t-distributions rather than normal distributions because the heavy

tails of the t-distribution for small ν cause the inferred value of the mean to

be less seriously affected by outliers in the data.

We perform Bayesian estimation on these parameters (µ1, µ2, σ1, σ2, ν), so

we must start with a prior distribution over each. I use the priors suggested

by Kruschke. The prior distribution over each of the mean parameters, µ1

and µ2, is a normal distribution whose mean is the mean value of the pooled

data (the data from the positive and negative groups pooled together), and

whose standard deviation is 1000 times the standard deviation of the pooled

data. The prior distribution over each of the standard deviation parameters,

σ1 and σ2, is a uniform distribution over values ranging from 0.001 times to

140

1000 times the standard deviation of the pooled data. The prior distribution

over the normality parameter ν is a shifted exponential given by 1
29

exp(−(ν−

1)/29) for ν ≥ 1. This distribution is designed by Kruschke to balance

probability between heavy-tailed and nearly-normal t-distributions.

We then use Bayes rule to calculate posterior values over the parameters

as follows.

p(µ1, σ1, µ2, σ2, ν|D) =
p(D|µ1, σ1, µ2, σ2, ν)p(µ1, σ1, µ2, σ2, ν)

p(D)
. (4.31)

In words, the posterior probability of a particular setting of the t-distribution

parameters equals the likelihood of the data given those parameter values

multiplied by the prior probability of the parameter values divided by the

evidence p(D).

The evidence p(D) can be thought of as the average likelihood of the

results weighted by the prior, integrating over all possible values of the pa-

rameters. It can also be thought of as a normalization term, ensuring that

the posterior is a probability distribution (i.e., that it integrates to 1). Since

the evidence is calculated by integrating a complicated term over all possible

values of the five parameters, it is not possible to compute analytically, so

we use a Markov Chain Monte Carlo method to compute the posterior. I use

a Python implementation (Straw, 2014) of the BEST software (Kruschke,

2013) to perform this computation.

From the posterior probability distribution over the t-distribution param-

eters, we can calculate our degree of belief that the two true mean values µ1

and µ2 are different. We can also calculate our degree of belief that the

data categorized as having positive relative eventual fitness or evolvability

really does have a mean value greater than zero—i.e., that in the region of

the parameter space in question the EGS algorithm outperforms selection for

141

fitness alone.

The purpose of the first part of this analysis, the building of the decision

trees, is to learn simple rules about how the fitness function and algorithm pa-

rameters affect whether selection for evolvability leads to increased eventual

fitness or evolvability compared to selection for fitness alone. The purpose

of the second part, the calculation of the probability that data classified as

positive or negative by the trees come from distributions with different true

means, is to determine the probability with which those rules are true. The

reason a different dataset is used in the Bayesian estimation part of the anal-

ysis than that used to build the decision trees is that the rules used by the

decision trees are partly due to random noise in the first dataset. Using

the decision trees’ classifications of the first dataset to group data, and per-

forming Bayesian data analysis on that same data, would over-estimate the

probability that these groups are sampled from distributions with different

true mean values. The reasoning is the same as that leading to the use of

separate training and testing datasets in machine learning (Ripley, 1996, p.

354).

4.8 Results

This section summarizes the results of the experiments described in the pre-

vious section. For each of relative eventual fitness and relative eventual

evolvability, there are two tables. The first shows, for each combination

of fitness function and evolvability estimation method, the probability that

the mean relative eventual value of the group identified as ‘positive’ by the

corresponding decision tree is greater than that of the group identified as

‘negative’, rounded to two decimal places. Recall that these probabilities are

142

Table 4.5: An index for the results in Tables 4.6 to 4.9, showing which table
to reference for each of eventual fitness and eventual evolvability, and for
each of the probability that the ‘positive’ group has a greater mean than the
negative group and the probability that the ‘positive’ group has a positive
mean.

Eventual fitness Eventual evolvability
Probability ‘positive’

greater than ‘negative’
Table 4.6 Table 4.8

Probability ‘positive’
is positive

Table 4.7 Table 4.9

statements of our state of belief after performing Bayesian inference on the

parameters of the distributions from which the results are drawn. When this

probability is close to 1, this means we are confident that the decision tree

has been able to identify a region of the parameter space that has a larger

mean relative eventual value than the remainder of the parameter space.

The second table shows the probability that the group identified as ‘pos-

itive’ does in fact have a positive mean value. When this probability is close

to 1, this means we are confident that the decision tree has been able to

identify a region of the parameter space in which the EGS algorithm leads

to greater eventual fitness or evolvability than selection for fitness alone. Ta-

ble 4.5 provides an index for the four results tables. In each of the results

tables, values greater than 0.95 are highlighted using boldface, and values

less than 0.05 are highlighted using italics.

Appendix A provides more detailed statistics from these experiments.

Appendix B provides, for each of relative eventual fitness and evolvability,

for each of the fitness functions, and for each of the evolvability estimation

methods, the decision tree that was used to separate data into ‘positive’ and

‘negative’ groups.

Figures 4.23 and 4.24 show some summary statistics of the distributions

143

representing our state of belief of the mean relative eventual fitness or evolv-

ability values of the group labelled ‘positive’ by the corresponding decision

tree. For each of the fitness functions, and for each of the evolvability esti-

mation methods, the figures show the mode and the minimum and maximum

value of the 95% highest density interval (HDI) of the posterior distribution

of the mean.

As Tables 4.6 and 4.7 show, for every fitness function and for every evolv-

ability estimation method, we believe with greater than 0.95 probability that

the decision tree identifies a region of the parameter space in which the EGS

algorithm leads to greater mean eventual fitness than selection for fitness

alone. On the other hand, in every case, we believe with less than 0.05 prob-

ability that the region identified by the decision tree as having positive mean

relative eventual fitness actually has a positive mean value. To summarize,

we are able to find a region of parameter space that increases the EGS algo-

rithm’s performance, but are not able to find a region in which it outperforms

selection for fitness alone.

Tables 4.8 and 4.9, however, show that the EGS algorithm is more suc-

cessful in increasing mean eventual evolvability. In all but four of the twelve

cases, we believe with greater than 0.95 probability that the ‘positive’ group

has a greater mean relative eventual evolvability than the ‘negative’ group.

In only two cases does our belief drop below 0.89. With the MVPR-particle

filter pairing of fitness function and estimation method, our belief is 0.39.

With the MVPR-Kalman filter pair it is 0.31. In all but two of the twelve

cases, we believe that the ‘positive’ group actually has a positive mean value.

For the MVPR-Kalman filter pair, our belief is 0.29. For the SEM-point es-

timate pair, our belief is 0.0.

144

Table 4.6: The probability that the ‘positive’ group has greater eventual
fitness—relative to selection for fitness alone—than the ‘negative’ group.

Point estimate Kalman filter Particle filter
SEM 1.00 1.00 1.00
MM 1.00 1.00 1.00
SM 1.00 1.00 1.00
MVPR 1.00 1.00 1.00

Table 4.7: The probability that the ‘positive’ group has positive eventual
fitness relative to selection for fitness alone.

Point estimate Kalman filter Particle filter
SEM 0.00 0.00 0.00
MM 0.00 0.00 0.00
SM 0.00 0.00 0.00
MVPR 0.00 0.01 0.00

Table 4.8: The probability that the ‘positive’ group has greater eventual
evolvability—relative to selection for fitness alone—than the ‘negative’ group.

Point estimate Kalman filter Particle filter
SEM 1.00 1.00 1.00
MM 1.00 1.00 1.00
SM 0.94 1.00 0.89
MVPR 0.97 0.31 0.39

Table 4.9: The probability that the ‘positive’ group has positive eventual
evolvability relative to selection for fitness alone.

Point estimate Kalman filter Particle filter
SEM 0.00 1.00 1.00
MM 1.00 1.00 1.00
SM 0.99 1.00 1.00
MVPR 1.00 0.29 0.98

145

Figure 4.23 shows that, as expected, the Kalman and particle filter out-

perform the point estimate method of evolvability estimation overall, in terms

of increasing mean eventual fitness. The Kalman filter and particle filter

outperform the point estimate method on both the SEM and MM fitness

functions. The Kalman filter outperforms the other two methods on the SM

fitness function. The particle filter outperforms the other two methods on

the MVPR fitness function.

Figure 4.24 shows no clear winner amongst the evolvability selection

methods in terms of increasing the mean eventual evolvability. Note that

these plots should not be used to compare the behaviour of the algorithm

across fitness functions, as the vertical axes are on different scales and are

not normalized.

Looking more closely at the data in Appendix A, we can see each of the

decision trees has an accuracy (proportion of data points labelled correctly

as either ‘positive’ or ‘negative’) greater than 0.5, apart from the tree which

aims to classify whether the mean relative eventual evolvability is positive in

the case of the MVPR-Kalman filter experiment, where the accuracy is 0.49.

We can also see that in five out of the twelve cases the empirical median

value of the fitness data of the ‘positive’ group falls outside of our HDI for

the mean. This suggests that the data may not be well described by a t-

distribution, and warrants further investigation. The empirical median value

of the evolvability data is always within our HDI of the mean, suggesting

that this data may be well described by a t-distribution.

146

700
600
500
400
300
200

SEM

2.5

2.0

1.5

1.0
MM

1.2
1.0
0.8
0.6
0.4

SM

Point estimate Kalman filter Particle filter
1.5

1.0

0.5

0.0
MVPR

Figure 4.23: The mode and 95% highest density interval on the mean relative
eventual fitness on each of the fitness functions, using each of the evolvability
estimation methods.

40
20
0

20
40
60

SEM

0.0
0.5
1.0
1.5
2.0
2.5

MM

0.0
0.1
0.2
0.3
0.4

SM

Point estimate Kalman filter Particle filter
1.0
0.5
0.0
0.5
1.0
1.5

MVPR

Figure 4.24: The mode and 95% highest density interval on the mean rela-
tive eventual evolvability on each of the fitness functions, using each of the
evolvability estimation methods.

147

Looking at the decision trees in Appendix B, we find some patterns. First

looking at the trees that categorize according to relative eventual fitness,

nearly universally, across fitness functions and estimation methods, EGS only

outperforms selection for fitness alone if a termination heuristic is used. This

was expected, as the purpose of the termination heuristic is to more efficiently

use fitness evaluations. This factor almost always appears as the root node

of the tree. In many cases, that termination heuristic 2 is used is enough

to ensure that the relative eventual fitness is classified as positive. Other

important factors determining a positive relative eventual fitness are that

the problem rate of change parameter δ is large, and that the population size

N is small.

Turning to the decision trees which classify according to relative eventual

evolvability, we find again that whether a termination heuristic is in use is

the most important factor. That a termination heuristic is used is enough to

classify the relative eventual evolvability as negative. This makes sense, as

the termination heuristic causes the algorithm to stop selecting for evolvabil-

ity before the end of the experiment. Other important factors determining a

positive relative eventual evolvability are population size N and the certainty

threshold P , though whether these should be small or large depends on the

fitness function.

4.9 Limitations and Conclusion

In this chapter I introduced the episodic group selection (EGS) algorithm

in an attempt to select for evolvability while making efficient use of a fixed

fitness evaluation budget. I compared this algorithm to an algorithm that

selects for fitness alone on four time-varying fitness functions. The findings

148

of this chapter are as follows.

1. We can identify regions of the parameter space in which the EGS algo-

rithm outperforms selection for fitness alone in terms of the achieved

eventual evolvability. However, we cannot identify regions of the pa-

rameter space in which the EGS algorithm outperforms selection for

fitness alone in terms of the achieved eventual fitness.

2. The Kalman filter and particle filter evolvability estimation methods

appear to outperform the point-estimate method in terms of the achieved

eventual fitness.

3. The termination heuristics, which decide when to stop selecting for

evolvability—and stop maintaining multiple populations—in order to

use fitness evaluations more efficiently, appear to be crucial for increas-

ing the achieved eventual fitness.

The limitations of the work described in this chapter are as follows. In

place of null hypothesis significance testing, I performed a Bayesian analysis

in which it is assumed that the relative eventual fitness and evolvability values

of the experiments classified as ‘positive’, of those identified as ‘negative’, and

of the data as a whole, follow t-distributions. However, in almost half of all

cases, the empirical median of the ‘positive’ group lies outside of the 95%

highest density interval on the mean of the t-distribution. This suggests that

the data may not follow a t-distribution, and warrants further investigation.

The performance of the EGS algorithm on the MVPR fitness function dif-

fers between the case that a Kalman filter or a particle filter is used to track

the population evolvabilities. Since these two sequential Bayesian filtering al-

gorithms are supposed to be approximating the same posterior distribution,

149

it appears that one or both of the algorithms are approximating the poste-

rior poorly. It may be that the Gaussian approximations of the likelihood

functions used by the Kalman filter lead to a poor approximation, or that

the repeated sampling of the particle filter are leading to a large sampling

error. In either case, this warrants further investigation.

The purpose of the algorithm proposed in this chapter is to estimate

population evolvabilities while making efficient use of fitness evaluations.

We will see in the next chapter a modification of the algorithm designed to

improve this efficiency.

150

Chapter 5

EGS With Asynchronous

Reproduction

Chapter 4 describes episodic group selection (EGS) for evolvability, an al-

gorithm in which we maintain K populations, use the fitness distributions

within each population to estimate the population evolvabilities, and then

periodically select the population with the highest estimated evolvability.

As we saw in Chapter 3, if we suppose that the estimation of evolvability

does not require the use of extra fitness evaluations, then selection for evolv-

ability can increase the eventual mean population fitness. However, as we

saw in Section 4.1, and in the results in Section 4.8, the fact that our evolv-

ability estimates are noisy, and that we must use fitness evaluations in order

to calculate those estimates, means that in many cases we see no increase in

eventual fitness as a result of selection for evolvability. This is because any

increase in fitness due to increased evolvability must more than compensate

for the increase by a factor of K in the number of fitness evaluations per gen-

eration in order to see any improvement overall. In the previous chapter we

made an initial attempt to increase the efficiency with which the EGS algo-

151

rithm makes use of fitness evaluations by introducing termination heuristics,

which determine a point at which we stop selecting for evolvability and stop

maintaining multiple populations.

In this chapter, I describe another method for using fitness evaluations

more efficiently in the EGS algorithm. Previously, each of the K popula-

tions went through the same number of generations synchronously between

evolvability selection events. In the method described in this chapter, the

populations can go through a different number of generations between evolv-

ability selection events. The method is to use a recent best arm identification

algorithm known as pure exploration Thompson sampling (Russo, 2016) to

decide, at each step, which population should go through a generation of

mutation and selection next.

5.1 Bandit Problems

A stochastic multi-armed bandit—named after the slot machines or “one-

armed bandits” found in a casino—consists of a collection of arms A =

{1, . . . , K} (Berry and Fristedt, 1985). At each time t, we ‘pull’ one of the

arms. When we pull arm k, we receive a reward drawn from some distribution

νk with mean µk. At each time t, we take an action at ∈ A and observe a

reward yt drawn (independently of previous samples) from νat . Our choice

of which arm to pull next depends on the sequence of actions and rewards

seen so far (a1:t−1, y1:t−1). In a Bayesian setting, we maintain probability

distributions representing our state of belief of the mean rewards of the K

arms. After each action-reward pair, we update the distribution and use it

to choose the next action.

The goal of a bandit problem is usually to minimize some measure of

152

regret. The immediate regret of pulling arm k is

Rk = µ∗ − µk , (5.1)

where µ∗ is the highest mean reward of the K arms. This regret is the

difference between the expected reward of the best arm and the arm chosen.

In typical bandit problems, the goal is to minimize the cumulative regret

RT =
T∑
t=1

Rat . (5.2)

Another problem is best arm identification, in which there is a pure explo-

ration phase of T steps (Audibert and Bubeck, 2010). The number of steps

T may be fixed, or else the exploration phase terminates when our belief

that one particular arm has the highest mean reward crosses some threshold

probability. After the exploration phase, we make a single recommendation

Ω(T) ∈ A, and the goal is to minimize the immediate regret of this decision,

RΩ(T).

5.2 Pure Exploration Thompson Sampling

Thompson sampling is a Bayesian algorithm for minimizing the cumulative

regret. Thompson sampling proceeds by, at each step, choosing each arm

with a probability equal to the probability that that arm has the highest mean

reward. We can do this by sampling a vector θ from our posterior distribution

over the mean rewards, and then pulling the arm i where i = argmaxk θk.

In its original form, this algorithm can perform poorly on best arm iden-

tification problems. Pure exploration Thompson sampling (PTS) is a mod-

ified version of Thompson Sampling where we reject our initial choice with

153

probability β, and repeatedly resample from the posterior until we choose a

different arm (Russo, 2016). PTS is described in Algorithm 15.

Algorithm 15 Pure exploration Thompson sampling

1: Sample θ from posterior.
2: at ← argmaxk θk
3: Sample U ∼ Uniform([0, 1]).
4: if U < β then
5: Take action at
6: else
7: do
8: Sample a new θ from posterior.
9: a′t ← argmaxk θk

10: while a′t = at
11: Take action a′t

Russo shows that, with β = 1/2, the probability of PTS ultimately choos-

ing a sub-optimal arm decays exponentially with the number of pulls in the

exploration phase, within a factor of two of the optimal exponent.

5.3 Episodic Group Selection with Asynchronous

Reproduction

In the episodic group selection with asynchronous reproduction (EGS-AR)

algorithm, we use the PTS best arm identification algorithm to choose which

population will reproduce next. The true evolvabilities of the K populations

are treated as the mean rewards of a K-armed bandit. Our evolvability

observations are our observed rewards. Taking population k through one

generation of reproduction corresponds to pulling the kth arm.

In the previous chapter, three methods were used to estimate the evolv-

abilities of the K populations: the point-estimate method, and two sequential

Bayesian filtering algorithms. These filtering algorithms, the Kalman filter

154

and particle filter, maintain a joint probability distribution over the popu-

lation evolvabilities. We can plug these distributions directly into the PTS

best arm identification algorithm. For this reason, only the two sequential

filtering estimation methods are used in this chapter.

As in the previous chapter, selection for evolvability occurs when we be-

lieve with greater than probability P that one population has greater evolv-

ability than all others. When this occurs, we duplicate the population that

we believe has the greatest evolvability to replace all other populations.

We still, optionally, use the termination heuristics described in the pre-

vious chapter. The next two sections describe how to choose the next pop-

ulation to reproduce in the case that we are using the Kalman filter or the

particle filter to calculate the posterior distributions over the population

evolvabilities.

5.3.1 Kalman filter

The Kalman filter represents our state of belief of the evolvabilities of the K

populations by a multivariate Gaussian with mean vector x and covariance

matrix P.

We choose which population will reproduce next by sampling a vector θ

from this multivariate Gaussian, and choosing population i = argmaxkθk.

With probability β we reject this choice, and repeatedly resample until we

choose a different population.

5.3.2 Particle filter

The particle filter represents our state of belief of the evolvabilities of the

K populations by a cloud of particles and associated weights. Each particle

is a vector of length K + 1, with the first K elements representing possible

155

values of the evolvabilities of the K populations, and the (K + 1)th element

representing a possible value for the process noise variance q.

We choose which population will reproduce next by sampling each particle

with probability equal to the associated weight, and choosing population

i = argmaxk∈{1,...,K} θk, where θ is the sampled particle. With probability

β we reject this choice and repeat this procedure until we choose a different

population.

5.4 Experimental Design

The experimental design is the same as that described in the previous chap-

ter. For each of the evolvability estimation methods and for each of fitness

functions, I sample 10 000 times from the parameter distributions, each time

performing a single trial of the EGS-AR, EGS, and selection for fitness alone

algorithms. I record the relative eventual fitness and evolvability of EGS-AR

for each trial. I split the data into two datasets, use the first to build two

decision trees to predict, based on the algorithm and fitness function param-

eters, whether the relative eventual fitness and evolvability will be positive

or negative.

The second dataset is grouped according to the predictions of the two

decision trees, and I perform Bayesian statistical tests to calculate a degree

of belief that the mean values of the two groups are different, and that the

mean value of the positive group is really positive. Additionally, I perform

Bayesian estimation on the whole dataset to determine whether the mean

eventual fitness and evolvability achieved by EGS-AR is greater than that

achieved by EGS, averaged over the whole joint parameter distribution.

156

5.5 Results

This section summarizes the results from the experiments described in the

previous section. For each of relative eventual fitness and relative eventual

evolvability, there are two results tables. summarizing the performance of the

EGS-AR algorithm relative to selection for fitness alone. The first shows, for

each combination of fitness function and evolvability estimation method, the

probability that the mean eventual value (relative to selection for fitness) of

the group identified as ‘positive’ by the corresponding decision tree is greater

than that of the group identified as ‘negative’, rounded to two decimal places.

Recall that these probabilities are statements of our state of belief after

performing Bayesian inference on the parameters of the distributions from

which the results are drawn. When this probability is close to 1, this means

we are confident that the decision tree has been able to identify a region of

the parameter space that has a larger mean relative eventual value than the

remainder of the parameter space.

The second results table shows the probability that the group identified

as ‘positive’ does in fact have a positive mean value (relative to selection for

fitness). When this probability is close to 1, this means we are confident that

the decision tree has been able to identify a region of the parameter space in

which the EGS-AR algorithm leads to greater eventual fitness or evolvability

than selection for fitness alone.

Finally, for each of relative eventual fitness and relative eventual evolv-

ability, there is a single results table summarizing the performance of the

EGS-AR algorithm relative to the EGS algorithm. Since the EGS-AR algo-

rithm was designed to outperform the EGS algorithm across the parameter

space, these tables show the probability that the mean relative eventual value

of the whole dataset is positive. When this probability is close to 1, we are

157

Table 5.1: An index for the results in Tables 5.2 to 5.7, showing which table
to reference for each of eventual fitness and eventual evolvability, and for
each of the probability that the ‘positive’ group has a greater mean relative
to selection for fitness alone than the negative group, the probability that the
‘positive’ group has a positive mean relative to selection for fitness alone, and
the probability that, averaging over the parameter distributions, the mean
value is positive relative to the EGS algorithm.

Eventual fitness Eventual evolvability
Probability ‘positive’

greater than ‘negative’
Table 5.2 Table 5.4

Probability ‘positive’
is positive

Table 5.3 Table 5.5

Probability EGS-AR
outperforms EGS

Table 5.6 Table 5.7

confident that, averaged over the distribution from which the parameters

were sampled, the eventual fitness or evolvability of the EGS-AR algorithm

is greater than that of the EGS algorithm operating with the same parame-

ters. Table 5.1 provides an index for the results tables. Values in the results

tables greater than 0.95 are highlighted using boldface. Values less than 0.05

are highlighted using italics.

Appendix C provides more detailed statistics from these experiments.

Appendix D provides the decision trees that were used to separate data into

‘positive’ and ‘negative’ groups.

Tables 5.2 and 5.3 tell much the same story as the results for the EGS

algorithm in Section 4.8. In every case, we believe with probability greater

than 0.95 that the corresponding decision tree has been able to identify a

‘positive’ region of parameter space where the mean relative eventual fitness

is greater than in the remainder of the parameter space. On the other hand,

in every case we believe with less than 0.05 probability that the ‘positive’

group actually has a positive mean value. In summary, while in every case

158

we are able to identify a region of the parameter space in which the EGS-AR

algorithm performs well in terms of eventual fitness, in no case do we find a

region in which the algorithm outperforms selection for fitness alone.

The results shown in Tables 5.4 and 5.5 are more encouraging than the

corresponding results for the EGS algorithm. In all but three out of eight

cases, we believe with probability greater than 0.95 that the ‘positive’ group

has a greater mean value than the ‘negative’ group, with the lowest probabil-

ity being 0.63 for the MVPR-Kalman filter experiment. More encouragingly,

in every case we believe with probability greater than 0.95 that the ‘positive’

group has a positive mean value. In summary, for every fitness function and

every evolvability estimation method, we are able to identify a region of the

parameter space in which we believe that the EGS-AR algorithm leads to

higher mean eventual evolvability than selection for fitness alone.

Tables 5.6 and 5.7 show the probability that, for equal parameter values,

averaged over the parameter distributions given in Section 4.7, the mean

eventual fitness or evolvability of the EGS-AR algorithm relative to the EGS

algorithm is positive. In all but two of eight cases, we believe with probability

greater than 0.95 that the mean relative eventual fitness is positive. In only

one case, the MVPR-Kalman filter experiment, does this probability drop be-

low 0.8. In only two of the eight cases do we believe with probability greater

than 0.95 that the mean relative eventual evolvability is positive. However,

in only one case does this probability drop below 0.7; for the MVPR-Particle

filter experiment, this probability is 0.26. In summary, the EGS-AR algo-

rithm outperforms the EGS algorithm across nearly all pairings of fitness

function and evolvability estimation method.

159

Table 5.2: The probability that the ‘positive’ group has greater eventual
fitness—relative to selection for fitness alone—than the ‘negative’ group.

Kalman filter Particle filter
SEM 1.00 1.00
MM 1.00 1.00
SM 1.00 1.00
MVPR 1.00 1.00

Table 5.3: The probability that the ‘positive’ group has positive eventual
fitness relative to selection for fitness alone.

Kalman filter Particle filter
SEM 0.00 0.00
MM 0.00 0.00
SM 0.00 0.00
MVPR 0.00 0.00

Table 5.4: The probability that the ‘positive’ group has greater eventual
evolvability—relative to selection for fitness alone—than the ‘negative’ group.

Kalman filter Particle filter
SEM 1.00 1.00
MM 1.00 1.00
SM 0.69 1.00
MVPR 0.63 0.86

160

Table 5.5: The probability that the ‘positive’ group has positive eventual
evolvability relative to selection for fitness alone.

Kalman filter Particle filter
SEM 1.00 1.00
MM 1.00 1.00
SM 1.00 1.00
MVPR 0.95 1.00

Table 5.6: The probability that the mean eventual fitness—averaging over
the joint algorithm and fitness function parameter distribution—is positive
relative to the EGS algorithm.

Kalman filter Particle filter
SEM 0.80 0.95
MM 0.99 0.97
SM 1.00 1.00
MVPR 0.31 1.00

Table 5.7: The probability that the mean eventual evolvability—averaging
over the joint algorithm and fitness function parameter distribution—is pos-
itive relative to the EGS algorithm.

Kalman filter Particle filter
SEM 0.88 0.92
MM 0.70 0.87
SM 0.90 0.98
MVPR 0.95 0.26

161

Looking more closely at the data in Appendix C, we can see that each of

the decision trees used in this analysis has accuracy greater than 0.5. In two

of eight cases and one of eight cases respectively, the empirical median value

of the eventual fitness or evolvability relative to selecting for fitness alone

falls outside of our mean HDI, suggesting that the data is not well described

by a t-distribution. In two of eight cases, the same is true for the eventual

fitness relative to the EGS algorithm.

Looking at the decision trees in Appendix D, specifically at the trees

which classify the eventual fitness relative to selection for fitness alone, we

see that, as in the previous chapter, whether or not a termination heuristic

is in use is the most important factor. It almost every case, the use of a

termination heuristic is necessary in order that the relative eventual fitness

be classified as positive. This is expected, as the purpose of the heuristic

is to use fitness evaluations more efficiently. Other factors which appear

frequently are that the population size N should be small, that termination

heuristic 2 should be used, and that the evolvability type should be εσ.

Turning to the decision trees which classify the eventual evolvability rel-

ative to selection for fitness alone, we see again that whether or not a ter-

mination heuristic is in use features prominently. The lack of a termination

heuristic often leads to a positive classification. This is expected, since the

termination heuristics stop the algorithm from selecting for evolvability be-

fore the end of the experiment. Other factors that feature prominently in the

positive class are a small population size N and a low problem rate of change

parameter δ. The evolvability type also features, but with the preferred type

depending on the fitness function.

162

5.6 Limitations and Conclusion

In this chapter I introduced the episodic group selection with asynchronous

reproduction (EGS-AR) algorithm, intended to make more efficient use of

fitness evaluations than the EGS algorithm. I compared this algorithm to

an algorithm that selects for fitness alone and to EGS on four time-varying

fitness functions. The findings of this chapter are as follows.

1. We can identify regions of the parameter space in which the EGS-AR al-

gorithm outperforms selection for fitness alone in terms of the achieved

eventual evolvability. The results are stronger than those comparing

the EGS algorithm to selection for fitness alone. However, we cannot

identify regions of the parameter space in which the algorithm outper-

forms selection for fitness alone in terms of eventual fitness.

2. In most pairings of fitness function and evolvability estimation method,

EGS-AR outperforms EGS in both eventual fitness and eventual evolv-

ability, when averaged over the parameter distributions. Note that this

fact depends on our choice of distributions over the parameters from

which we sample when performing the experiments.

The limitations of the work described in this chapter are as follows. As

in the previous chapter, in some cases the empirical median of the relative

eventual fitness values lies outside of the 95% highest density interval on

the mean of the t-distribution we are supposing describes the data. This

suggests that the data may not follow a t-distribution, and warrants further

investigation.

Again, as in the previous chapter, the performance of the EGS-AR al-

gorithm on the MVPR fitness function depends on whether a Kalman filter

163

or a particle filter is tracking the population evolvabilities. Since these al-

gorithms are supposed to be approximating the same posterior distribution,

one or both of the algorithms appears to be approximating the distribution

poorly. This warrants further investigation.

Chapter 3 established a kind of upper bound on our expectations of the

performance of an algorithm that selects for evolvability. The EGS-AR algo-

rithm represents a step towards such an upper bound, by outperforming the

EGS algorithm when assigned an equal number of fitness evaluations. How-

ever, EGS-AR is still outperformed by selection for fitness alone in terms of

eventual fitness. It would be useful to establish an upper bound of the perfor-

mance of an algorithm that selects for evolvability on the four time-varying

fitness functions the EGS and EGS-AR algorithms have been evaluated on.

This could be done by discounting any fitness evaluations which are used to

estimate and select for evolvability, thereby increasing the number of gen-

erations allocated to the algorithm, and recording the result. However, in

the case of using a Kalman filter of particle filter to track the population

evolvabilities, separating out fitness evaluations in terms of those used to

select for fitness, and those used to estimate and select for evolvability, are

not straightforward. This is because the evolvability estimates of the filters

is based on a sequence of evolvability observations, and populations in which

we measure a sequence of large evolvability observations will see large in-

creases in fitness; when we select a population for having a large evolvability,

we are partly selecting for fitness. We could determine an upper bound as

described above by returning to the point-estimate evolvability estimation

method described in the previous chapter, and using a very large poll popu-

lation size N ′, while not counting any of the NN ′ fitness evaluations used in

the evolvability selection step.

164

Chapter 6

Related Work

This chapter reviews the small number of publications that feature evolution-

ary algorithms in which selection for fitness is supplemented with or replaced

by selection for evolvability estimates. The algorithms described differ in

their definitions and measures of evolvability, but they share the same broad

idea: to use offspring fitnesses or behaviours to estimate the evolvability of

the parent or the evolvability of the offspring and to use this estimate during

selection.

Some of the methods estimate evolvability by simple sampling. For ex-

ample, if the evolvability of an individual is taken to be the probability that

it produces an offspring fitter than itself, then we might estimate this by the

proportion of the offspring of an individual which are fitter than itself. Other

algorithms use more involved methods to calculate evolvability estimates.

With one exception, the algorithms described here work by producing

a ‘poll’ population, as described in Chapter 4 and depicted in Figure 4.1.

The poll population is used to estimate the evolvabilities of the parents and

is then discarded. The next generation is then produced by selecting again

from the parent population, this time for some combination of fitness and

165

estimated evolvability. As a short-hand, I will refer to these as look-ahead

evolvability selection algorithms, since they work by looking ahead to see

what the offspring fitness or behaviour distribution of each individual would

look like before actually producing the next generation. The use of such poll

populations increases the number of fitness evaluations per generation by at

least a factor of two. Some of the authors are aware that, as discussed in

Section 4.1, evolvability estimates will be noisy unless the sample size is large.

As a result, they opt to use large poll populations, increasing the number of

fitness evaluations per generation many-fold.

In the following, I describe the algorithms, the problems on which they

are tested, and the findings of the authors. I also compare how the results

of these algorithms are reported. Specifically, I will discuss whether these

selection-for-evolvability algorithms are fairly compared to corresponding al-

gorithms which select for fitness alone. Since the algorithms which select for

evolvability can use many more fitness evaluations per generation, in order

to fairly compare each algorithm should be allocated the same number of

fitness evaluations rather than the same number of generations.

6.1 Estimation of Evolvability Genetic Algo-

rithm

In what appears to be the first example of explicit selection for evolvability,

Wang and Wineberg (2006) describe the estimation of evolvability genetic

algorithm (EEGA). The focus of their research is to increase diversity within

an evolutionary algorithm, and to prevent premature convergence. They

select for evolvability in order to select for ‘useful diversity’ rather than for

any kind of diversity. Of the algorithms discussed in this section, theirs is the

166

only one that does not use the look-ahead method described above, in which a

poll offspring population is used in order to calculate the evolvabilities of the

parents. In their algorithm, the next generation is constructed by selecting

from the current generation three times; once for fitness, and once each for

two measures of evolvability.

By their first measure of evolvability, which I’ll call the fitness difference,

the evolvability of an individual is the difference between its fitness and

its parent’s fitness. By their second measure, which I’ll call the genetic

difference, it is the degree to which the individual’s genotype differs from its

parent’s.

Once an offspring population has been constructed by selecting three

times for fitness, fitness difference, and genetic difference, the whole popu-

lation goes through a further round of selection for fitness alone. A single

iteration of this process is illustrated by Figure 6.1.

Figure 6.1: The EEGA algorithm. Lines indicate parent-offspring relation-
ships, with offspring appearing below parents. Each of the subsets of the
middle population are filled by selecting for a different criterion. The first
is filled by selecting for fitness, the second by selecting for fitness difference,
and the third by selecting for genetic difference. Then a third population is
constructed by selecting for fitness from the whole middle population.

The purpose of selecting for genetic difference appears to be to produce

167

a population with a large amount of genetic variance, rather than genetic

variability. The purpose of selecting for fitness differences may be to select for

the (hidden) propensity of individuals to produce fitter offspring. However,

their algorithm selects for an estimate of this underlying propensity using a

sample size of one, and so the estimate is likely to be noisy, as we saw in

Section 4.1.

They test their algorithm against a simple genetic algorithm that selects

for fitness alone on a dynamic fitness function. The fitness function is a

continuous function that undergoes smooth translation over time. They find

that their algorithm is better able than selection for fitness alone to track

the global optimum after an initial stationary period. Since their algorithm

expends as many fitness evaluations per generation as selecting for fitness

alone with the same population size, there is no need when comparing the

algorithm with selection for fitness alone to adjust the number of generations

allocated to each algorithm in order that each is allocated the same number

of fitness evaluations; the comparison between EEGA and selection for fitness

alone is fair. The authors conclude that the strategy is good, and note that

the diversity of the populations produced by the EEGA algorithm is actually

lower than that of the simple genetic algorithm, and conclude that it is not

by increasing diversity alone that EEGA performs well. That EEGA out-

performs the simple genetic algorithm agrees with the findings of Chapter 3,

in which we see that selection for evolvability can increase eventual fitness.

However, it is in disagreement with our findings in Chapters 4 and 5, where

we fail to achieve higher eventual fitness by selecting for evolvability.

168

6.2 Recurrent Genetic Algorithm

Fakeih and Kattan (2012) use a simple method to estimate and select for

evolvability by sampling, which they call a recurrent genetic algorithm (RGA).

RGA uses a look-ahead method, using a poll offspring population to estimate

the evolvability of each individual in the population.

The evolvability of an individual is defined as the expected mean fitness

of its offspring. In order to estimate this, a poll population is constructed

by selecting for fitness alone. The mean fitness of the offspring of each indi-

vidual gives that individual’s estimated evolvability. The poll population is

discarded, and the next generation is constructed by selecting for estimated

evolvability from the parent population.

Since the poll offspring population is the same size as the parent popula-

tion, the mean number of offspring per individual is one. The result is that a

very small number of samples from the offspring fitness distribution of each

individual are used to estimate the mean offspring fitness; the evolvability

estimates will be noisy.

They compare RGA to a simple genetic algorithm that selects for fitness

alone. The algorithms are compared on several NK-landscape and hamming

centres problems (unimodal and multimodal problems of tunable difficulty),

and on three continuous problems. The fitness functions are not time-varying

or open-ended. Broadly, the results show that RGA and the simple genetic

algorithm have similar performance on the easier problems, and that RGA

outperforms the simple GA on the harder problems. They find that the

populations produced by RGA are more diverse than those produced by the

simple GA, contradicting the results of Wang and Wineberg (2006).

In order that the comparison is fair, the authors account for the fact that

RGA uses twice as many fitness evaluations per generation than selecting

169

for fitness alone with the same population size. They do this by halving

the number of generations allocated to RGA. It is worth noting that the

authors initially saw poor performance on the continuous fitness functions,

and only saw improved performance after modifying the algorithm. The

authors conclude that RGA has the potential to work well on real world

optimization problems. That RGA outperforms the simple GA agrees with

the findings of Chapter 3, in which we see that selection for evolvability can

increase eventual fitness. However, it is in disagreement with our findings in

Chapters 4 and 5, where we fail to achieve higher eventual fitness by selecting

for evolvability.

6.3 Recurrent Bayesian Genetic Programming

In a later paper, Kattan and Ong (2015) use a Bayesian model to estimate

the probability that an individual will produce offspring fitter than itself.

They call the algorithm introduced in this paper recurrent Bayesian genetic

programming (RBGP). This algorithm also uses the look-ahead method of

producing a poll offspring population in order to sample from the offspring

fitness distribution of the individuals in the parent population.

In RBGP, the evolvability of an individual is its probability of producing

an offspring that is fitter than itself. For individual i we will call this proba-

bility pi. Each individual produces 100 offspring, and the proportion of the

offspring that are fitter than the parent is used to estimate the probabilities

pi. The poll population is then discarded and the next generation is con-

structed by selecting from the parent population for a combination of fitness

and evolvability. The intention of the authors is to use Bayesian inference to

infer the probabilities pi from the fitness samples from the poll population,

170

but the inference method appears to be flawed.

In order to perform Bayesian inference of the probability pi, we should

start with some prior distribution p(pi). Our posterior distribution of pi given

the number of offspring N and the number s of those that were fitter than

the parent would then be

p(pi|N, s) =
p(s|N, pi)p(pi)∫ 1

0
p(s|N, p′)p(p′) dp′

, (6.1)

where p(s|N, pi) is the likelihood that an individual whose probability of

having a fitter offspring is pi has s such offspring if it has N offspring in

total. The number of offspring which are fitter, s, is a variate drawn from

a binomial distribution B(N, pi), and so p(s|N, pi) is the probability density

function of the binomial distribution with those parameters.

The authors use the maximum likelihood value of pi,
s
N

, as their ‘prior

distribution’. This is a single value giving an estimate of the value of pi

rather than a distribution over the parameter which is to be inferred. Their

‘likelihood’ is a Gaussian distribution with parameters with values whose

origin is uncertain. Their ‘posterior’ is also just a single number, which is

an estimate of the value of pi, rather than a distribution representing the

updated state of belief of pi.

The standard way to perform this particular inference would be to start

with a beta distribution Beta(1, 1) prior over the probabilities pi. Since

the binomial distribution is conjugate to the beta distribution, the posterior

distribution over the pi would also be a beta distribution Beta(1+s, 1+N−s).

Although the Bayesian inference in the RBGP algorithm appears to be

flawed, their work seems to be the first use of Bayesian inference to estimate

evolvabilities. The authors are also the first to suggest combining observa-

171

tions from multiple generations to produce better estimates, as is done by

the EGS and EGS-AR algorithms described in Chapters 4 and 5.

The RBGP algorithm is tested against a simple genetic programming

algorithm which selects for fitness alone. They are compared on fifteen prob-

lems, twelve of which are symbolic regression problems and three of which

are time-series problems. The problems are not time-varying or open-ended.

The RBGP algorithm achieves better median performance than the simple

GP on nine of the fifteen problems. The margin between the performance of

the simple GP and RBGP varies. The authors conclude that the results are

promising, since their algorithm outperforms the simple GP in most cases,

and loses by a small margin when it does not.

The RBGP algorithm uses a much larger sample size than the algorithms

discussed so far when estimating evolvability, leading to less noisy evolvabil-

ity estimates. But since each individual produces 100 offspring in the poll

population, the algorithm uses 100 times as many fitness evaluations per

generation. When comparing RBGP with a standard genetic programming

algorithm that selects for fitness alone, the authors ensure that each method

is given an equal number of fitness evaluations, but this is done by increas-

ing the population size of the standard genetic programming algorithm by a

factor of 100 rather than giving it more generations to work with, which may

lead to unfair comparisons. That RBGP outperforms the simple GP agrees

with the findings of Chapter 3, in which we see that selection for evolvability

can increase eventual fitness. However, it is in disagreement with our find-

ings in Chapters 4 and 5, where we fail to achieve higher eventual fitness by

selecting for evolvability.

172

6.4 Modelling Evolvability in Genetic Pro-

gramming

Fowler and Banzhaf (2016) use machine learning methods to model the evolv-

abilities of genetic programs that use a tree representation. I will refer to their

approach here as modelling evolvability in genetic programming (MEGP). Ini-

tially, their method works using the look-ahead method by sampling from a

poll offspring population which is then discarded.

In their algorithm, the evolvability of individual i is the probability pi that

it produces offspring whose fitness is greater than its own fitness. Initially, in

order to estimate this, in each generation a poll offspring population is con-

structed in which each individual produces a large number of offspring, e.g.,

1000 or 2000. For each individual, the proportion of these offspring which

are fitter than the individual itself is used as an estimate of the probability

pi. The poll population is discarded and the next generation is constructed

by selecting again from the parent population. Fowler and Banzhaf try two

different selection schemes. The first is to select for evolvability only if the

magnitude of the difference between the fitnesses of two individuals is be-

low a threshold value. The second is to select for a weighted sum of fitness

and evolvability, with the weight given to selecting for evolvability decaying

over time. The weight given to selecting for evolvability decays for the same

reason that we use the termination heuristics in the EGS and EGS-AR al-

gorithm; early gains in evolvability have a greater impact on eventual fitness

than later gains.

During the first phase of the algorithm, for each parent, several features

of each parent program tree, such as the tree depth and number of dormant

nodes, are recorded along with the estimated evolvability. Each of these is

173

used as a training example for an artificial neural network that is trained to

predict the evolvability of an individual from properties of the tree.

After some number of generations, the algorithm stops producing the poll

population and selects instead for the predicted evolvability produced by the

artificial neural network. In the initial phase of the algorithm, the number of

samples used to estimate evolvability is very large, which means the evolv-

ability estimates are accurate, but that the number of fitness evaluations

expended in each generation is increased by at least 1000-fold. After the

training phase, the number of fitness evaluations per generation is the same

as a standard genetic programming algorithm that selects for fitness alone

with the same population size.

The algorithm is tested on some order tree problems, which are syn-

thetic problems of tunable difficulty. The problems are neither time-varying

nor open-ended. First, the authors show that if they run the algorithm en-

tirely in its first phase, i.e., if the algorithm relies in every generation on an

evolvability estimate estimated from a large sample of offspring, then the al-

gorithm outperforms a simple genetic programming algorithm which selects

for fitness alone. They then show that they achieve similar performance with

the full algorithm, which at some point stops relying on samples and starts

selecting for predicted evolvability; the MEGP algorithm still outperforms

simple GP.

When comparing MEGP to a standard genetic programming algorithm

without selection for evolvability, Fowler and Banzhaf do not account for

the extra fitness evaluations per generation expended by MEGP. The fitness

achieved by MEGP is compared with that achieved by standard GP at the

corresponding generation. For this reason, the comparison may not be fair.

That MEGP outperforms the simple GP agrees with the findings of Chap-

174

ter 3, in which we see that selection for evolvability can increase eventual

fitness. However, it is in disagreement with our findings in Chapters 4 and 5,

where we fail to achieve higher eventual fitness by selecting for evolvability.

6.5 Evolvability Search

Mengistu et al. (2016) describe the evolvability search (ES) algorithm. It

uses the look-ahead method, producing a poll offspring population in order

to estimate evolvability by sampling. Mengistu et al. claim that direct

selection for evolvability estimates is an unexplored idea. As we have seen,

this is not quite true.

Unlike the other algorithms described in this chapter, the evolvability

measure used by the ES algorithm is not related to fitness. In the ES algo-

rithm, the evolvability of an individual is its phenotypic variability, i.e., it’s

propensity to produce offspring displaying a wide range of behaviours. In

their publication, the ES algorithm is tested on a map navigation problem

and a bipedal robot locomotion problem, and evolvability is the propensity to

produce offspring with a wide range of behaviours when solving these tasks.

In order to estimate the phenotypic variability or evolvability of an in-

dividual, a poll offspring population is produced, in which each parent indi-

vidual produces 200 offspring. The measured evolvability of an individual is

the total number of unique behaviours exhibited amongst that individual’s

offspring. The poll population is then discarded, and the next generation is

produced by selecting from the parent population for evolvability alone. The

motivation of Mengistu et al. is to produce evolvable phenotypes in order

that they can be studied; they are less interested in their algorithm’s ability

to produce highly fit phenotypes.

175

Evolvability search is compared with an objective-based evolutionary al-

gorithm and with novelty search (NS) on two robot control problems, in

which the robots are to be controlled by artificial neural networks. The first

is a maze navigation problem, in which the goal is to solve the maze, and the

second is a bipedal locomotion problem, in which the goal is to travel as far

as possible. The deceptive nature of the maze navigation problem prevents

the objective-based algorithm from finding a solution in most cases. How-

ever, NS and ES are almost always able to find a solution. The authors note

that the ES algorithm leads to a higher diversity of solutions than either

objective-based search or NS. On the biped locomotion problem, ES finds

solutions which outperform those found by objective-based search, but NS

outperforms both. On both problems, ES produces more evolvable individ-

uals than either of the other algorithms.

The authors conclude that, although ES is computationally expensive,

direct selection for evolvability is viable. Since a large number of samples

are used to estimate evolvability, the estimates should be accurate, at the

cost of a 200-fold increase in the number of fitness evaluations per gener-

ation. In reporting their main results, Mengistu et al. do not account for

the difference in the number of fitness evaluations per generation between

the three algorithms; each algorithm is allocated the same number of gen-

erations. They note that the comparison might not be fair as a result, and

subsequently report the evolvability achieved by objective-based search and

NS if the algorithms are allowed to run for longer. They report that in this

case the evolvability values plateau, and would likely not increase if the al-

gorithms were allowed to run for longer still. However, due to computational

constraints the algorithms are only allowed to run for 2.5 times longer than

the default setting, and so the number of fitness evaluations allocated to

176

objective-based search and NS is still lower than that allocated to their ES

algorithm, by a factor of around eighty. They also do not report the number

of cases in which objective-based search or NS are able to solve the maze

navigation problem if those algorithms are allowed to run for longer. That

ES is able to achieve higher evolvability agrees with our findings from Chap-

ters 3 to 5, where we find increased evolvability as a result of selecting for

evolvability.

6.6 Comparison to This Work

All of the algorithms described in the preceding sections are shown to outper-

form a corresponding algorithm that selects for fitness alone on some fitness

function. This is in agreement with the findings of Chapter 3, in which the

analysis of a simple evolvability model reveals that selection for evolvability

can increase eventual fitness. However, these results are not in agreement

with the findings of Chapters 4 and 5, in which the EGS and EGS-AR algo-

rithms fail to outperform selection for fitness alone.

Note though that of the related work described, only in that of Wang and

Wineberg (2006) and Fakeih and Kattan (2012) is the proposed algorithm

compared fairly against a benchmark algorithm. We may ask why these two

algorithms were able to achieve higher eventual fitness than selection for fit-

ness alone, while the algorithms described in Chapters 4 and 5 failed to do so.

One common feature of these two algorithms is that they use very small sam-

ple sizes to estimate evolvability. Direct comparison to these two algorithms

may not be possible. The EEGA algorithm of Wang and Wineberg (2006)

does not use a poll offspring population in order to estimate the evolvabili-

ties of the parent population. Instead, it uses the fitness differences between

177

the current generation and the previous generation in order to estimate the

evolvabilities of the current generation. For this reason, their algorithm does

not use more fitness evaluations per generation than the algorithm that se-

lects for fitness alone. The RGA algorithm of Fakeih and Kattan (2012) is

tested on fitness functions which are neither open ended nor time-varying,

which all of the fitness functions described in Section 4.6 are. Moreover, the

fitness functions on which RGA is tested are of tunable difficulty, and the

improved performance of RGA over the baseline algorithm is only observed

for problems of increased difficulty. The fitness functions used to test EGS

and EGS-AR in Chapters 4 and 5 are not of tunable difficulty.

Mengistu et al. (2016) demonstrates increased evolvability as a result of

selection for estimated evolvability, which agrees with all of the findings of

this thesis.

The similarities and differences between the related algorithms described

in this chapter and the EGS-AR algorithm described in Chapter 5 are summa-

rized in Tables 6.1 to 6.3, with the EGS-AR algorithm displayed in boldface.

Table 6.1: A comparison of the algorithms described in this chapter and
in Chapter 5. The columns give the evolvability estimation method, the
evolvability measures used, and whether the algorithm produces a poll pop-
ulation in order to estimate evolvabilities (look-ahead), or not (look-back),
or maintains multiple populations between evolvability selection events.

Method Evolvability measure Structure

EEGA Sampling
Fitness increase,
genetic difference

Look-back

RGA Sampling Mean offspring fitness Look-ahead
RBGP Bayesian model Probability of improvement Look-ahead
MEGP ML model Probability of improvement Look-ahead
ES Sampling Phenotypic variability Look-ahead

EGS-AR Bayesian model
STD of offspring fitnesses,
maximum offspring fitness

Multiple
populations

178

Table 6.2: A comparison of the algorithm described in this chapter and in
Chapter 5. The columns give the sample size used to estimate evolvability,
whether the algorithm combines estimates from multiple generations, and
whether the fact that the evolvability selection algorithm uses more fitness
evaluations is taken into account when comparing to selection for fitness
alone.

Sample size Combines samples Fair comparison

EEGA 1 No
Yes, evolvability selection
uses same num. evaluations

RGA Mean is 1 No
Yes, reduces
num. generations

RBGP 100 No
Yes, reduces
population size

MEGP
100, 1000
(varies)

No No

ES 200 No No
EGS-AR Mean is 1 Yes Yes

Table 6.3: A comparison of the algorithm described in this chapter and in
Chapter 5. The columns give whether selection for evolvability becomes
weaker over time, and whether a best-arm identification is used to efficiently
decide which individuals should reproduce next.

Decaying importance of
evolvability selection

Best-arm identification

EEGA No No
RGA No No
RBGP No No

MEGP
Yes, decaying
weight

No

ES No No

EGS-AR
Yes, termination
heuristics

Yes

179

180

Chapter 7

Conclusion

This thesis posed two questions. The first was the extent to which we should

select for evolvability if certain conditions are satisfied in order to maximize

eventual fitness. One of those assumptions was that evolvability information

is accurate and can be obtained at no cost in terms of fitness evaluations. The

second question was, if that assumption were relaxed, whether the algorithms

described in Chapters 4 and 5, which incorporate selection for evolvability,

outperform selection for fitness alone in terms either of eventual evolvability

or eventual fitness.

The motivation of this work was two-fold. Firstly, the algorithm proposed

for the second research question might perform well on some time-varying

optimization problems. Secondly, the results obtained from studying a simple

model of evolvability selection, and the results obtained from the experiments

comparing the proposed algorithm to selection for fitness alone, might help

us to better understand the dynamics of selection for evolvability in natural

evolution.

181

7.1 Challenges and Methods

In completing the work presented in this thesis, there was a long sequence

of choices to be made. How should the populations of the EGS algorithm

be structured? What algorithm should be used to estimate the population

evolvabilities? On what fitness functions should the algorithms be tested?

How should the EGS-AR algorithm decide which population to reproduce

next?

Wherever possible, I have used existing algorithms and approaches, in

order to decrease the number of novel features to be tested. The Kalman

filter and particle filter algorithms, for example, which are used by the EGS

and EGS-AR algorithms, are standard algorithms for sequential Bayesian

filtering, and the four fitness functions on which the algorithms are tested

are taken directly from work in the literature that aims to measure differences

in long-term fitness due to differences in evolvability.

The most novel aspect of the work, apart from the theoretical model and

the algorithms of Chapters 3 to 5 themselves, is the way in which the results

are analysed. The EGS and EGS-AR algorithm, together with one of the

four fitness functions, has nine or ten parameters, depending. Without any

prior feeling for in which regions of the parameter space these algorithms

would outperform selection for fitness alone, I sought to identify those re-

gions. Unable to find a standard method for doing this, I devised my own.

Taking a large number of samples from the specified joint distribution over

the parameters, and running a single trial for each setting of the parameters,

I used half of the results to train a decision tree (itself a well-known and in-

terpretable method in machine learning), and grouped the rest of the results

into a ‘positive’ and a ‘negative’ group, according to whether the decision

tree predicted that the EGS or EGS-AR algorithm would outperform selec-

182

tion for fitness alone or not on those parameters. Having grouped the data

in this way, I could then return to using a standard method from Bayesian

statistics to determine a degree of belief that the mean value of the ‘positive’

group was greater than that of the ‘negative’ group, and also that the mean

value of the ‘positive’ group was indeed positive. The end result is that the

former probability tells us whether the decision tree has been able to find a

region of the parameter space in which the algorithm performs well, and the

latter probability tells us whether, in that region, the algorithm outperforms

selection for fitness alone.

7.2 Findings

In Chapter 3, I studied a simple model of evolvability selection, and asked,

within that model, the extent to which we should select for evolvability.

I found that, if evolvability information is accurate and obtained without a

cost in terms of fitness evaluations, then selecting for evolvability can increase

eventual fitness.

In Chapter 4 I relaxed the assumption that evolvability information is

both accurate and obtained for free, and examined the effect on the conclu-

sions reached in studying the simple evolvability model. I introduced the

EGS algorithm, designed to make efficient use of fitness evaluations in order

to estimate and select for evolvability, and found by experiment that the EGS

algorithm is capable of outperforming selection for fitness alone in terms of

the eventual evolvability achieved, but not in terms of eventual fitness. The

termination heuristics—an optional part of the EGS algorithm for deciding

when to stop selecting for evolvability in order to make more efficient use

of fitness evaluations—turned out to be crucial for increasing the eventual

183

fitness achieved by the algorithm.

The work of Chapter 5 is motivated by the fact that any increase in even-

tual fitness in the EGS algorithm due to increased evolvability appears to be

more than compensated for by the increase in the number of fitness evalua-

tions per generation. In that chapter, I introduce the EGS-AR algorithm, in

which a recent best-arm identification algorithm is used to determine which

algorithm will go through a generation of reproduction next. The purpose of

the algorithm is to make more efficient use of fitness evaluations. I find that

the EGS-AR algorithm outperforms the EGS algorithm in terms of both the

eventual fitness and eventual evolvability achieved.

The research presented in this thesis does not rule out the utility of se-

lecting for evolvability in order to increase eventual fitness. First it is demon-

strated that selecting for evolvability can increase eventual fitness if evolv-

ability information is accurate and obtained at no cost in terms of fitness

evaluations. This establishes a kind of upper bound on our expectations of

the performance of algorithms that select for evolvability; if eventual fitness

had not been increased in this case, there would be no possibility that it

would be increased once the cost of calculating evolvability estimates was

taken into account. Then, the EGS algorithm was shown to outperform se-

lection for fitness alone in terms of the eventual evolvability achieved, but

not the eventual fitness. The termination heuristics are shown to be crucial

to increasing the eventual fitness achieved by the EGS and EGS-AR algo-

rithm. The EGS-AR algorithm represents a step towards the upper bound on

performance established by the theoretical work, as it outperforms the EGS

algorithm both in terms of eventual fitness and eventual evolvability, but still

fails to achieve greater eventual fitness than selection for fitness alone.

The failure of the EGS and EGS-AR algorithms to outperform selection

184

for fitness alone in terms of eventual fitness disagrees with the findings of the

related work described in Chapter 6. However, in only two of five cases are the

proposed algorithms in the related work compared fairly to a corresponding

algorithm that selects for fitness alone. One common feature of these two

algorithms is the use of very small sample sizes to estimate evolvability, which

is surprising given the argument presented in Section 4.1. That selection for

evolvability estimates leads to increased evolvability agrees with the findings

of Mengistu et al. (2016).

7.3 Limitations and Future Work

In this section I discuss the limitations and shortcomings of the work of this

thesis, and give recommendations for future work intended either to remedy

theses shortcomings or to take the research in new directions.

The study of the simple evolvability model in Chapter 3 is restricted to the

case that the population size is N = 2 in order to simplify the evolutionary

dynamics. The restriction eliminates any correlation between fitness and

evolvability in the population, so there are no indirect selection effects. The

model also assumes that evolvability information is accurate and comes at

no cost in terms of fitness evaluations. It would be interesting to see an

extension of the model in which either of these assumptions are relaxed.

In Chapter 3, we were restricted to considering constant values of the

selection trade-off parameter γ. One possibility is to allow a selection trade-

off parameter γ(t) that is a function of the current generation number t.

We expect the optimal γ(t) to be monotonically increasing with t, selecting

more strongly for evolvability towards the beginning of the simulation, and

for fitness towards the end. Finding the optimal function γ(t) may be a

185

difficult problem. Since the problem is that of obtaining a function which

maximizes an expression containing that function within a sum, the correct

approach may be related to the calculus of variations, which is concerned

with finding a function to minimize a given integral.

In Chapters 4 and 5, in place of null hypothesis significance testing, I

performed a Bayesian analysis in which it is assumed that the relative even-

tual fitness and evolvability values of the experiments classified as ‘posi-

tive’, of those identified as ‘negative’, and of the data as a whole, follow

t-distributions. However, in some cases, the empirical median of the data

lies outside of the 95% highest density interval on the mean of the inferred

t-distribution. This suggests that the data may not be well described by a

t-distribution, and warrants further investigation.

The performance of the EGS and EGS-AR algorithm on the MVPR fit-

ness function differs between the case that a Kalman filter or a particle filter

is used to track the population evolvabilities. Since these two methods should

be approximating the same posterior distribution, it appears that one or both

of the algorithms are approximating the distribution poorly. This warrants

further investigation.

The simple evolvability model represents a kind of upper bound on the

performance of an algorithm that selects for evolvability, since in that model

we expend no fitness evaluations in measuring evolvability. The EGS-AR

algorithm is an attempt to modify the EGS algorithm in order to step towards

this upper bound. It appears to succeed, outperforming the EGS algorithm

in terms of both eventual fitness and eventual evolvability. However, the

EGS-AR algorithm fails to outperform selection for fitness alone in terms

of eventual fitness. It would be useful to establish an upper bound on the

performance of the EGS algorithm on the same four time-varying fitness

186

functions, by returning to the point-estimate evolvability estimation method,

using a large poll population size N ′, and not counting towards the fixed

fitness evaluation budget any of the NN ′ fitness evaluations used in the

evolvability selection step. In doing so, we would be discounting any fitness

evaluations that are used purely to estimate and select for evolvability.

Termination heuristics were introduced in Chapters 4 and 5, and the

statistical analysis used indicated that whether or not a termination heuristic

is in use is often the most important factor in determining the performance

of the algorithm. Although this thesis has focused on making the sampling

methods that are used in order to estimate evolvability more efficient in terms

of the number of fitness evaluations used, we may be able to achieve improved

performance by designing better termination heuristics.

7.4 Concluding Remarks

This thesis has shown that, in principle, selection for evolvability estimates

may be a viable strategy for solving time-varying or open-ended problems.

It has shown that, in the case that evolvability estimates are accurate and

free, selection for evolvability can increase long-term fitness. Even when the

cost of calculating evolvability estimates is taken into account, selection for

evolvability is shown to increase long-term evolvability.

The work presented here may be of interest to any researcher interested

in the evolution of evolvability in artificial systems. There are many such

researchers, as we saw in Section 2.4.2. Direct selection for evolvability ap-

pears to be a novel topic; this thesis represents the sixth published work,

by various authors, concerning direct selection for evolvability in evolution-

ary algorithms. All were published since 2006, and five were published since

187

2012. This work will be of direct interest to researchers interested in apply-

ing direct selection for evolvability in order to better solve time-varying or

open-ended problems.

188

Bibliography

Aboitiz, F. (1991). Lineage selection and the capacity to evolve. Medical

hypotheses, 36(2):155–156.

Alberch, P. (1991). From genes to phenotype: dynamical systems and evolv-

ability. Genetica, 84(1):5–11.

Altenberg, L. (1994). The evolution of evolvability in genetic programming.

In Kinnear, K. E., editor, Advances in Genetic Programming, Complex

Adaptive Systems, pages 47–74, Cambridge. MIT Press.

Altenberg, L. (1995). Genome growth and the evolution of the genotype-

phenotype map. In Evolution and Biocomputation, pages 205–259.

Springer.

Audibert, J.-Y. and Bubeck, S. (2010). Best arm identification in multi-

armed bandits. In COLT-23th Conference on Learning Theory-2010, pages

13–p.

Baugh, D. and McMullin, B. (2013). Evolution of G-P mapping in a von

Neumann self-reproducer within Tierra. In Advances in Artificial Life,

ECAL, volume 12, pages 210–217.

Bedau, M. and Packard, N. (1996). Measurement of evolutionary activity,

teleology, and life.

189

Berry, D. A. and Fristedt, B. (1985). Bandit problems: sequential allocation of

experiments (Monographs on statistics and applied probability). Springer.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classifi-

cation and regression trees. CRC press.

Ciliberti, S., Martin, O. C., and Wagner, A. (2007). Innovation and robust-

ness in complex regulatory gene networks. Proceedings of the National

Academy of Sciences, 104(34):13591–13596.

Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary origins

of modularity. Proceedings of the Royal Society B: Biological Sciences,

280(1755):20122863–20122863.

Conrad, M. (1979a). Bootstrapping on the adaptive landscape. BioSystems,

11(2):167–182.

Conrad, M. (1979b). Mutation-absorption model of the enzyme. Bulletin of

mathematical biology, 41(3):387–405.

Conrad, M. (1990). The geometry of evolution. BioSystems, 24(1):61–81.

Dawkins, R. (2003). The evolution of evolvability. On Growth, Form and

Computers, pages 239–255.

Deb, K. and Agrawal, R. B. (1994). Simulated binary crossover for continuous

search space. Complex Systems, 9(3):1–15.

Draghi, J. and Wagner, G. (2009). The evolutionary dynamics of evolvability

in a gene network model. Journal of evolutionary biology, 22(3):599–611.

Draghi, J. and Wagner, G. P. (2008). Evolution of evolvability in a develop-

mental model. Evolution, 62(2):301–315.

190

Earl, D. J. and Deem, M. W. (2004). Evolvability is a selectable trait.

Proceedings of the National Academy of Sciences of the United States of

America, 101(32):11531–11536.

Ebner, M., Shackleton, M., and Shipman, R. (2002). How neutral networks

influence evolvability. Complexity, 7(2):19–33.

Egri-Nagy, A. and Nehaniv, C. L. (2003). Evolvability of the genotype-

phenotype relation in populations of self-replicating digital organisms in a

Tierra-like system. In Advances in Artificial Life, pages 238–247. Springer.

Eiben, Á. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control

in evolutionary algorithms. Evolutionary Computation, IEEE Transactions

on, 3(2):124–141.

Eyre-Walker, A. and Keightley, P. D. (2007). The distribution of fitness

effects of new mutations. Nature Reviews Genetics, 8(8):610–618.

Fakeih, A. and Kattan, A. (2012). Recurrent genetic algorithms: Sustaining

evolvability. In Evolutionary Computation in Combinatorial Optimization,

pages 230–242. Springer.

Fowler, B. and Banzhaf, W. (2016). Modelling evolvability in genetic pro-

gramming. In Genetic Programming, pages 215–229. Springer.

Gallagher, A. (2009). Evolvability: a formal approach. PhD thesis, University

of Oxford.

Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review

of Ecology, Evolution, and Systematics, pages 123–157.

Hansen, T. F., Pélabon, C., and Houle, D. (2011). Heritability is not evolv-

ability. Evolutionary Biology, 38(3):258–277.

191

Hasegawa, T. and McMullin, B. (2013). Exploring the point-mutation space

of a von Neumann self-reproducer within the Avida world. In Advances in

Artificial Life, ECAL, volume 12, pages 316–323.

Holtzman, W. H. (1950). The unbiased estimate of the population variance

and standard deviation. The American journal of psychology, 63(4):615–

617.

Houle, D. (1992). Comparing evolvability and variability of quantitative

traits. Genetics, 130(1):195–204.

Kálmán, R. E. (1960). A new approach to linear filtering and prediction

problems. Journal of basic Engineering, 82(1):35–45.

Kashtan, N. and Alon, U. (2005). Spontaneous evolution of modularity and

network motifs. Proceedings of the National Academy of Sciences of the

United States of America, 102(39):13773–13778.

Kashtan, N., Noor, E., and Alon, U. (2007). Varying environments can

speed up evolution. Proceedings of the National Academy of Sciences,

104(34):13711–13716.

Kattan, A. and Ong, Y.-S. (2015). Bayesian inference to sustain evolvability

in genetic programming. In Proceedings of the 18th Asia Pacific Symposium

on Intelligent and Evolutionary Systems, Volume 1, pages 75–87. Springer.

Kirschner, M. and Gerhart, J. (1998). Evolvability. Proceedings of the Na-

tional Academy of Sciences, 95(15):8420–8427.

Knight, K. (2000). Mathematical statistics. Texts in statistical science series.

Chapman & Hall/CRC Press, Boca Raton (Fla.).

192

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal

of Experimental Psychology: General, 142(2):573.

Labbe, R. (2016). Kalman and Bayesian filters in

Python, GitHub repository, https://github.com/rlabbe/

Kalman-and-Bayesian-Filters-in-Python, commit

5fcdf5af47b2f351e570473557eef6cf09f91922.

Lehman, J. and Miikkulainen, R. (2015). Extinction events can accelerate

evolution. PloS one, 10(8):e0132886.

Levinton, J. (1988). Genetics: paleontology and macroevolution. Technical

report.

Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology

and Systematics, pages 1–18.

Mahner, M. and Kary, M. (1997). What exactly are genomes, genotypes and

phenotypes? And what about phenomes? Journal of Theoretical Biology,

186(1):55–63.

Marrow, P., Heath, M., and Re, I. I. (1999). Evolvability: Evolution, com-

putation, biology. In Proceedings of the 1999 Genetic and Evolutionary

Computation Conference Workshop Program (GECCO-99 Workshop on

Evolvability), pages 30–33. Citeseer.

Maynard Smith, J. (1970). Natural selection and the concept of a protein

space. Nature, 225:563–64.

Maynard Smith, J. and Szathmáry, E. (1997). The major transitions in

evolution. Oxford University Press.

193

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

McMullin, B. (2000). John von Neumann and the evolutionary growth of

complexity: Looking backward, looking forward. Artificial Life, 6(4):347–

361.

McMullin, B. (2012). Architectures for self-reproduction: Abstractions, re-

alisations and a research program. In Artificial Life, volume 13, pages

83–90.

Mengistu, H., Lehman, J., and Clune, J. (2016). Evolvability search: Directly

selecting for evolvability in order to study and produce it. In Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO 2016).

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT

press.

Nadarajah, S. and Kotz, S. (2008). Exact distribution of the max/min of

two Gaussian random variables. IEEE Transactions on very large scale

integration (VLSI) systems, 16(2):210–212.

Ofria, C. and Wilke, C. O. (2004). Avida: A software platform for research

in computational evolutionary biology. Artificial life, 10(2):191–229.

O’Neill, M., Nicolau, M., and Brabazon, A. (2011). Dynamic environments

can speed up evolution with genetic programming. In Proceedings of the

13th annual conference companion on Genetic and evolutionary computa-

tion, pages 191–192. ACM.

Palmer, M. E. and Feldman, M. W. (2011). Spatial environmental variation

can select for evolvability. Evolution, 65(8):2345–2356.

Palmer, M. E. and Feldman, M. W. (2012). Survivability is more fundamental

than evolvability. PloS one, 7(6):e38025.

194

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,

J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,

E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830.

Pelikan, M., Goldberg, D. E., and Lobo, F. G. (2002). A survey of optimiza-

tion by building and using probabilistic models. Computational Optimiza-

tion and Applications, 21(1):5–20.

Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics,

9(1):75–82.

Quayle, A. P. and Bullock, S. (2006). Modelling the evolution of genetic

regulatory networks. Journal of Theoretical Biology, 238(4):737–753.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA.

Reisinger, J. and Miikkulainen, R. (2006). Selecting for evolvable repre-

sentations. In Proceedings of the 8th Annual Conference on Genetic and

Evolutionary Computation, pages 1297–1304. ACM.

Reisinger, J., Stanley, K. O., and Miikkulainen, R. (2005). Towards an

empirical measure of evolvability. In Proceedings of the 2005 workshops on

Genetic and evolutionary computation, pages 257–264. ACM.

Ripley, B. (1996). Pattern recognition and neural networks.

Rudolph, G. (2001). Self-adaptive mutations may lead to premature conver-

gence. Evolutionary Computation, IEEE Transactions on, 5(4):410–414.

195

Russo, D. (2016). Simple Bayesian algorithms for best arm identification.

arXiv preprint arXiv:1602.08448.

Smith, T., Husbands, P., Layzell, P., and O’Shea, M. (2002). Fitness land-

scapes and evolvability. Evolutionary Computation, 10(1):1–34.

Sniegowski, P. D. and Murphy, H. A. (2006). Evolvability. Current Biology,

16(19):R831–R834.

Stanley, K. O. and Miikkulainen, R. (2003). A taxonomy for artificial em-

bryogeny. Artificial Life, 9(2):93–130.

Straw, A. (2014). “best” software, GitHub repository, https://github.com/

strawlab/best, commit 6964d17f3ce889a1899097bf6c53e569e8c9b245.

Toth, M. (2014). Mechanisms of non-genetic inheritance and psychiatric

disorders. Neuropsychopharmacology: official publication of the American

College of Neuropsychopharmacology.

Toussaint, M. (2002). On the evolution of phenotypic exploration distribu-

tions. In FOGA, pages 169–182. Citeseer.

Turney, P. (1999). Increasing evolvability considered as a large-scale trend

in evolution.

Van Belle, T. and Ackley, D. H. (2002). Code factoring and the evolution of

evolvability. In GECCO, volume 2, pages 1383–1390.

Van Belle, T. and Ackley, D. H. (2003). Adaptation and ruggedness in

an evolvability landscape. In Genetic and Evolutionary Computation—

GECCO 2003, pages 150–151. Springer.

196

https://github.com/strawlab/best
https://github.com/strawlab/best

Visser, J., Hermisson, J., Wagner, G. P., Meyers, L. A., Bagheri-Chaichian,

H., Blanchard, J. L., Chao, L., Cheverud, J. M., Elena, S. F., Fontana, W.,

et al. (2003). Perspective: evolution and detection of genetic robustness.

Evolution, 57(9):1959–1972.

Von Neumann, J. and Burks, A. W. (1966). Theory of self-reproducing au-

tomata. University of Illinois Press, Urbana.

Wagner, G. P. and Altenberg, L. (1996). Complex adaptations and the

evolution of evolvability. Evolution, 50(3):967–976.

Wang, Y. and Wineberg, M. (2006). Estimation of evolvability genetic al-

gorithm and dynamic environments. Genetic Programming and Evolvable

Machines, 7(4):355–382.

Webb, A. M., Handl, J., and Knowles, J. (2015). How much should you select

for evolvability? In ECAL 13: The Thirteenth European Conference on

Artificial Life, volume 13, pages 487–494. MIT Press.

Webb, A. M. and Knowles, J. (2014). Studying the evolvability of self-

encoding genotype-phenotype maps. In ALIFE 14: The Fourteenth Con-

ference on the Synthesis and Simulation of Living Systems, volume 14,

pages 79–86. MIT Press.

Wolfram Research, Inc. (2016). Mathematica 10.4.

197

198

Appendix A

EGS Data

This chapter lists the results from the experiments described in Section 4.7.

The results tables are organized by fitness function and evolvability estima-

tion method. For each, there are two tables, one for relative eventual fitness

(eventual fitness for EGS minus eventual fitness when selecting for fitness

alone), and one for relative eventual evolvability. The fields of the tables are

as follows.

• Proportion positive: The proportion of experiments in which the

relative eventual fitness or evolvability is positive. Note that this de-

pends on the distributions from which the parameters were sampled

from, including the EGS algorithm parameters, and so this number is

not necessarily indicative of the performance of EGS compared with

selection for fitness alone.

• Accuracy: The proportion of times the decision tree trained to clas-

sify the relative eventual fitness or evolvability as positive or negative

correctly classifies the second dataset. Note that since only one trial is

performed per experiment, the data is very noisy and so high accuracy

199

levels are not expected. Values greater than 0.6 are in boldface, and

values less than 0.5 are in italics.

• Sensitivity: The proportion of times the decision tree correctly classi-

fies the results in which the relative eventual fitness or evolvability was

actually positive. Values greater than 0.6 are in boldface, and values

less than 0.5 are in italics.

• Specificity: The proportion of times the decision tree correctly classi-

fies the results in which the relative eventual fitness or evolvability was

actually negative. Values greater than 0.6 are in boldface, and values

less than 0.5 are in italics.

• Negative empirical median: The empirical median relative even-

tual fitness or evolvability of the results which were classified by the

decision tree as having negative values. Values which lie outside of the

inferred highest density interval (HDI), presumably because the data

distribution is not normal, are in italics.

• Negative mean HDI: The highest density interval (95%) of the dis-

tribution representing our state of belief of the mean value of the group

predicted to have negative relative eventual fitness or evolvability. This

is the highest density interval in which we believe the mean value falls

with probability 0.95.

• Positive empirical median: The empirical median relative eventual

fitness or evolvability of the results which were classified by the de-

cision tree as having positive values. Values which lie outside of the

inferred highest density interval (HDI), presumably because the data

distribution is not normal, are in italics.

200

• Positive mean HDI: The highest density interval (95%) of the distri-

bution representing our state of belief of the mean value of the group

predicted to have positive relative eventual fitness or evolvability. This

is the highest density interval in which we believe the mean value falls

with probability 0.95.

• Different means probability: The probability representing our be-

lief that the positive group mean is greater than that the negative

group. High values mean than we believe that the decision tree has,

based on the algorithm and problem parameters, split the experiments

into two groups with different mean result values. Probabilities greater

than 0.95 are in boldface.

• Positive mean probability: The probability representing our belief

that the positive group has a mean value of relative eventual fitness or

evolvability that is actually positive. High values mean that we believe

that the decision tree has identified a region of parameter space in which

EGS achieves higher eventual fitness or evolvability than selection for

fitness alone. Probabilities greater than 0.95 are in boldface.

201

Table A.1: SEM, point estimate, eventual fitness

Proportion positive 0.13

Accuracy, sensitivity, specificity 0.69, 0.86, 0.66

Negative empirical median -2008.08

Negative mean HDI [-1706.51, -1527.72]

Positive empirical median -720.63

Positive mean HDI [-600.02, -445.43]

Different means probability 1.00

Positive mean probability 0.00

Table A.2: SEM, point estimate, eventual evolvability

Proportion positive 0.38

Accuracy, sensitivity, specificity 0.54, 0.70, 0.45

Negative empirical median -98.78

Negative mean HDI [-113.19, -95.47]

Positive empirical median -28.20

Positive mean HDI [-36.49, -21.93]

Different means probability 1.00

Positive mean probability 0.00

202

Table A.3: SEM, Kalman filter, eventual fitness

Proportion positive 0.19

Accuracy, sensitivity, specificity 0.68, 0.77, 0.65

Negative empirical median -1389.81

Negative mean HDI [-1214.12, -1084.66]

Positive empirical median -383.48

Positive mean HDI [-452.84, -328.33]

Different means probability 1.00

Positive mean probability 0.00

Table A.4: SEM, Kalman filter, eventual evolvability

Proportion positive 0.45

Accuracy, sensitivity, specificity 0.56, 0.53, 0.59

Negative empirical median -42.09

Negative mean HDI [-54.44, -37.67]

Positive empirical median 13.39

Positive mean HDI [5.55, 23.32]

Different means probability 1.00

Positive mean probability 1.00

203

Table A.5: SEM, particle filter, eventual fitness

Proportion positive 0.20

Accuracy, sensitivity, specificity 0.71, 0.70, 0.71

Negative empirical median -1401.96

Negative mean HDI [-1276.86, -1135.96]

Positive empirical median -256.03

Positive mean HDI [-365.79, -247.68]

Different means probability 1.00

Positive mean probability 0.00

Table A.6: SEM, particle filter, eventual evolvability

Proportion positive 0.48

Accuracy, sensitivity, specificity 0.56, 0.49, 0.64

Negative empirical median -31.28

Negative mean HDI [-37.99, -25.70]

Positive empirical median 27.61

Positive mean HDI [22.73, 42.79]

Different means probability 1.00

Positive mean probability 1.00

204

Table A.7: MM, point estimate, eventual fitness

Proportion positive 0.19

Accuracy, sensitivity, specificity 0.67, 0.81, 0.64

Negative empirical median -13.95

Negative mean HDI [-14.42, -13.72]

Positive empirical median -1.90

Positive mean HDI [-2.42, -1.92]

Different means probability 1.00

Positive mean probability 0.00

Table A.8: MM, point estimate, eventual evolvability

Proportion positive 0.65

Accuracy, sensitivity, specificity 0.59, 0.43, 0.86

Negative empirical median 0.15

Negative mean HDI [0.11, 0.23]

Positive empirical median 1.97

Positive mean HDI [1.90, 2.07]

Different means probability 1.00

Positive mean probability 1.00

205

Table A.9: MM, Kalman filter, eventual fitness

Proportion positive 0.27

Accuracy, sensitivity, specificity 0.63, 0.75, 0.59

Negative empirical median -6.87

Negative mean HDI [-7.14, -6.66]

Positive empirical median -1.20

Positive mean HDI [-1.39, -1.04]

Different means probability 1.00

Positive mean probability 0.00

Table A.10: MM, Kalman filter, eventual evolvability

Proportion positive 0.55

Accuracy, sensitivity, specificity 0.54, 0.58, 0.50

Negative empirical median 0.06

Negative mean HDI [0.02, 0.14]

Positive empirical median 0.35

Positive mean HDI [0.35, 0.48]

Different means probability 1.00

Positive mean probability 1.00

206

Table A.11: MM, particle filter, eventual fitness

Proportion positive 0.26

Accuracy, sensitivity, specificity 0.65, 0.81, 0.59

Negative empirical median -7.48

Negative mean HDI [-7.92, -7.45]

Positive empirical median -1.28

Positive mean HDI [-1.36, -1.02]

Different means probability 1.00

Positive mean probability 0.00

Table A.12: MM, particle filter, eventual evolvability

Proportion positive 0.56

Accuracy, sensitivity, specificity 0.54, 0.40, 0.73

Negative empirical median 0.07

Negative mean HDI [-0.01, 0.10]

Positive empirical median 0.75

Positive mean HDI [0.62, 0.78]

Different means probability 1.00

Positive mean probability 1.00

207

Table A.13: SM, point estimate, eventual fitness

Proportion positive 0.25

Accuracy, sensitivity, specificity 0.69, 0.85, 0.64

Negative empirical median -20.95

Negative mean HDI [-20.09, -19.07]

Positive empirical median -0.55

Positive mean HDI [-1.14, -0.72]

Different means probability 1.00

Positive mean probability 0.00

Table A.14: SM, point estimate, eventual evolvability

Proportion positive 0.52

Accuracy, sensitivity, specificity 0.50, 0.32, 0.69

Negative empirical median 0.02

Negative mean HDI [-0.05, 0.11]

Positive empirical median 0.08

Positive mean HDI [0.04, 0.26]

Different means probability 0.94

Positive mean probability 0.99

208

Table A.15: SM, Kalman filter, eventual fitness

Proportion positive 0.29

Accuracy, sensitivity, specificity 0.61, 0.97, 0.45

Negative empirical median -13.28

Negative mean HDI [-13.67, -12.94]

Positive empirical median -0.75

Positive mean HDI [-1.14, -0.84]

Different means probability 1.00

Positive mean probability 0.00

Table A.16: SM, Kalman filter, eventual evolvability

Proportion positive 0.51

Accuracy, sensitivity, specificity 0.51, 0.38, 0.65

Negative empirical median 0.03

Negative mean HDI [-0.08, 0.09]

Positive empirical median 0.16

Positive mean HDI [0.11, 0.33]

Different means probability 1.00

Positive mean probability 1.00

209

Table A.17: SM, particle filter, eventual fitness

Proportion positive 0.29

Accuracy, sensitivity, specificity 0.65, 0.88, 0.56

Negative empirical median -10.99

Negative mean HDI [-11.52, -10.93]

Positive empirical median -0.40

Positive mean HDI [-0.78, -0.49]

Different means probability 1.00

Positive mean probability 0.00

Table A.18: SM, particle filter, eventual evolvability

Proportion positive 0.52

Accuracy, sensitivity, specificity 0.51, 0.54, 0.48

Negative empirical median 0.09

Negative mean HDI [-0.00, 0.16]

Positive empirical median 0.19

Positive mean HDI [0.08, 0.26]

Different means probability 0.89

Positive mean probability 1.00

210

Table A.19: MVPR, point estimate, eventual fitness

Proportion positive 0.40

Accuracy, sensitivity, specificity 0.56, 0.53, 0.57

Negative empirical median -3.29

Negative mean HDI [-3.56, -2.94]

Positive empirical median -0.86

Positive mean HDI [-1.31, -0.62]

Different means probability 1.00

Positive mean probability 0.00

Table A.20: MVPR, point estimate, eventual evolvability

Proportion positive 0.51

Accuracy, sensitivity, specificity 0.52, 0.63, 0.40

Negative empirical median -0.47

Negative mean HDI [-0.90, 0.69]

Positive empirical median 0.87

Positive mean HDI [0.07, 1.33]

Different means probability 0.97

Positive mean probability 1.00

211

Table A.21: MVPR, Kalman filter, eventual fitness

Proportion positive 0.42

Accuracy, sensitivity, specificity 0.55, 0.45, 0.63

Negative empirical median -2.11

Negative mean HDI [-2.34, -1.79]

Positive empirical median -0.56

Positive mean HDI [-0.92, -0.15]

Different means probability 1.00

Positive mean probability 0.01

Table A.22: MVPR, Kalman filter, eventual evolvability

Proportion positive 0.50

Accuracy, sensitivity, specificity 0.49, 0.52, 0.47

Negative empirical median 0.19

Negative mean HDI [-0.90, 0.72]

Positive empirical median -0.14

Positive mean HDI [-0.90, 0.52]

Different means probability 0.31

Positive mean probability 0.29

212

Table A.23: MVPR, particle filter, eventual fitness

Proportion positive 0.40

Accuracy, sensitivity, specificity 0.55, 0.57, 0.55

Negative empirical median -2.90

Negative mean HDI [-3.03, -2.44]

Positive empirical median -0.85

Positive mean HDI [-1.36, -0.61]

Different means probability 1.00

Positive mean probability 0.00

Table A.24: MVPR, particle filter, eventual evolvability

Proportion positive 0.52

Accuracy, sensitivity, specificity 0.50, 0.60, 0.39

Negative empirical median 0.59

Negative mean HDI [-0.09, 1.71]

Positive empirical median 0.40

Positive mean HDI [0.07, 1.47]

Different means probability 0.39

Positive mean probability 0.98

213

214

Appendix B

EGS Decision Trees

This chapter provides the decision trees that are used as part of the data

analysis pipeline for the experiments described in Section 4.7. The purpose

of these trees is to identify regions of the parameter space in which the

EGS algorithm leads to greater mean eventual fitness or evolvability than

selection for fitness alone. The feature labels for the termination heuristic in

the trees have the following meaning. ‘Termination heuristic on’ is a feature

whose value is one if a termination heuristic is used and zero otherwise.

‘Termination heuristic type’ takes value zero for termination heuristic 1 and

the value one for termination heuristic 2.

215

Termination heuristic type <= 0.5
5094

[2547.0, 2547.0]
negative

Termination heuristic on <= 0.5
3442

[1874.1427, 673.9754]
negative

True

Generations between evolvability selection <= 16.5
1652

[672.8573, 1873.0246]
positive

False

1692
[963.4354, 43.1031]

negative

Population size <= 25.0
1750

[910.7072, 630.8723]
negative

394
[174.2322, 352.6615]

positive

1356
[736.475, 278.2108]

negative

451
[213.2052, 309.5585]

positive

Fitness evaluations <= 4750.0
1201

[459.6521, 1563.4662]
positive

514
[182.8292, 764.1]

positive

Tournament size <= 23.0
687

[276.8229, 799.3662]
positive

373
[158.1845, 380.0908]

positive

314
[118.6384, 419.2754]

positive

Figure B.1: SEM, point estimate, eventual fitness

Population size <= 17.0
5026

[2513.0, 2513.0]
negative

803
[317.9289, 540.4015]

positive

True

Termination heuristic on <= 0.5
4223

[2195.0711, 1972.5985]
negative

False

Tournament size <= 27.0
1386

[826.4551, 471.1875]
negative

Termination heuristic type <= 0.5
2837

[1368.616, 1501.411]
positive

719
[490.1071, 142.4211]

negative

667
[336.348, 328.7664]

negative

Intermediate population size <= 6.5
1472

[757.5838, 700.1261]
negative

Crossover rate <= 0.35
1365

[611.0322, 801.285]
positive

873
[419.6342, 464.5323]

positive

599
[337.9496, 235.5937]

negative

668
[309.9207, 374.0217]

positive

697
[301.1115, 427.2632]

positive

Figure B.2: SEM, point estimate, eventual evolvability

216

Termination heuristic on <= 0.5
5046

[2523.0, 2523.0]
positive

Population size <= 41.0
1674

[988.6689, 154.0763]
negative

True

Termination heuristic type <= 0.5
3372

[1534.3311, 2368.9237]
positive

False

662
[375.1809, 132.0654]

negative

1012
[613.488, 22.0109]

negative

Population size <= 29.0
1691

[854.2393, 806.1494]
negative

Certainty threshold <= 0.8327
1681

[680.0918, 1562.7743]
positive

492
[202.8666, 440.2181]

positive

Problem rate of change <= 0.9372
1199

[651.3727, 365.9313]
negative

580
[310.4103, 198.0981]

negative

619
[340.9625, 167.8332]

negative

Population size <= 35.0
983

[417.3429, 825.4089]
positive

698
[262.7488, 737.3653]

positive

363
[135.6517, 387.9422]

positive

620
[281.6912, 437.4667]

positive

Figure B.3: SEM, Kalman filter, eventual fitness

Population size <= 39.0
4931

[2465.5, 2465.5]
positive

Population size <= 11.0
1885

[820.3226, 1092.8042]
positive

True

Tournament size <= 39.0
3046

[1645.1774, 1372.6958]
negative

False

521
[185.8189, 352.3736]

positive

Tournament size <= 15.0
1364

[634.5037, 740.4306]
positive

834
[431.4625, 399.2081]

negative

530
[203.0412, 341.2225]

positive

Termination heuristic on <= 0.5
1759

[1070.4983, 644.5314]
negative

Population size <= 73.0
1287

[574.679, 728.1644]
positive

600
[411.521, 162.8055]

negative

Number of populations <= 3.5
1159

[658.9774, 481.7259]
negative

595
[319.9711, 269.8557]

negative

564
[339.0063, 211.8702]

negative

542
[210.2926, 345.6829]

positive

745
[364.3864, 382.4815]

positive

Figure B.4: SEM, Kalman filter, eventual evolvability

217

Termination heuristic on <= 0.5
4904

[2452.0, 2452.0]
positive

Population size <= 41.0
1636

[979.5458, 182.5433]
negative

True

Population size <= 13.0
3268

[1472.4542, 2269.4567]
positive

False

626
[355.5714, 145.5412]

negative

1010
[623.9744, 37.002]

negative

406
[110.3714, 567.3642]

positive

Termination heuristic type <= 0.5
2862

[1362.0829, 1702.0926]
positive

Number of populations <= 3.5
1424

[765.7013, 500.7606]
negative

Certainty threshold <= 0.7599
1438

[596.3816, 1201.332]
positive

728
[371.2491, 335.4849]

negative

696
[394.4522, 165.2757]

negative

583
[264.6404, 397.1549]

positive

Fitness evaluations <= 6250.0
855

[331.7412, 804.1771]
positive

496
[203.1836, 424.2897]

positive

359
[128.5575, 379.8873]

positive

Figure B.5: SEM, particle filter, eventual fitness

218

Population size <= 19.0
4985

[2492.5, 2492.5]
negative

901
[345.1004, 562.1252]

positive

True

Tournament size <= 19.0
4084

[2147.3996, 1930.3748]
negative

False

Population size <= 37.0
1469

[879.7631, 580.6568]
negative

Number of populations <= 4.5
2615

[1267.6365, 1349.7181]
positive

565
[296.4947, 267.6786]

negative

904
[583.2683, 312.9781]

negative

Fitness evaluations <= 7250.0
1984

[920.5918, 1067.626]
positive

631
[347.0447, 282.0921]

negative

Tournament size <= 43.0
1368

[671.7307, 696.994]
positive

616
[248.8612, 370.632]

positive

782
[404.3994, 376.8092]

negative

586
[267.3313, 320.1848]

positive

Figure B.6: SEM, particle filter, eventual evolvability

219

Termination heuristic on <= 0.5
5041

[2520.5, 2520.5]
negative

1664
[1026.4591, 0.0]

negative

True

Termination heuristic type <= 0.5
3377

[1494.0409, 2520.5]
positive

False

Population size <= 29.0
1675

[845.1016, 804.9764]
negative

Generations between evolvability selection <= 17.5
1702

[648.9393, 1715.5236]
positive

481
[209.1164, 374.7759]

positive

Intermediate population size <= 5.5
1194

[635.9852, 430.2005]
negative

567
[289.3085, 258.6482]

negative

627
[346.6767, 171.5524]

negative

465
[209.7332, 329.9084]

positive

Population size <= 35.0
1237

[439.2061, 1385.6152]
positive

403
[161.0011, 374.7759]

positive

Intermediate population size <= 6.5
834

[278.205, 1010.8393]
positive

505
[178.2733, 570.0817]

positive

329
[99.9317, 440.7576]

positive

Figure B.7: MM, point estimate, eventual fitness

Termination heuristic on <= 0.5
4996

[2498.0, 2498.0]
negative

Problem rate of change <= 0.7015
1658

[338.6398, 1096.4002]
positive

True

Fitness evaluations <= 3750.0
3338

[2159.3602, 1401.5998]
negative

False

582
[181.3636, 350.7863]

positive

1076
[157.2762, 745.614]

positive

Termination heuristic type <= 0.5
1054

[592.2655, 491.4098]
negative

Problem rate of change <= 0.4042
2284

[1567.0947, 910.1899]
negative

515
[260.7102, 255.7495]

negative

539
[331.5553, 235.6604]

negative

476
[293.2989, 207.8447]

negative

Termination heuristic type <= 0.5
1808

[1273.7958, 702.3452]
negative

892
[589.4317, 367.7847]

negative

Tournament size <= 19.0
916

[684.3642, 334.5605]
negative

465
[331.5553, 178.4838]

negative

451
[352.8088, 156.0767]

negative

Figure B.8: MM, point estimate, eventual evolvability

220

Termination heuristic on <= 0.5
5014

[2507.0, 2507.0]
negative

Number of populations <= 3.5
1694

[1090.8321, 182.5305]
negative

True

Termination heuristic type <= 0.5
3320

[1416.1679, 2324.4695]
positive

False

873
[535.8473, 165.7675]

negative

821
[554.9847, 16.763]

negative

Problem rate of change <= 0.9967
1668

[796.2527, 936.8655]
positive

Certainty threshold <= 0.88
1652

[619.9152, 1387.604]
positive

835
[426.4907, 392.9993]

negative

833
[369.762, 543.8663]

positive

Tournament size <= 21.0
1133

[448.3621, 888.4391]
positive

519
[171.5532, 499.1649]

positive

580
[248.1028, 404.1746]

positive

553
[200.2593, 484.2645]

positive

Figure B.9: MM, Kalman filter, eventual fitness

Termination heuristic on <= 0.5
4987

[2493.5, 2493.5]
negative

Fitness evaluations <= 5250.0
1722

[709.4058, 984.5151]
positive

True

Fitness evaluations <= 6250.0
3265

[1784.0942, 1508.9849]
negative

False

804
[257.257, 519.9329]

positive

918
[452.1487, 464.5822]

positive

Tournament size <= 35.0
1879

[963.3218, 920.0906]
negative

Problem rate of change <= 0.7261
1386

[820.7724, 588.8943]
negative

Certainty threshold <= 0.7531
1310

[694.9281, 622.4676]
negative

569
[268.3937, 297.623]

positive

527
[262.8254, 264.0497]

positive

783
[432.1027, 358.4179]

negative

500
[318.5087, 194.1809]

negative

886
[502.2637, 394.7134]

negative

Figure B.10: MM, Kalman filter, eventual evolvability

221

Termination heuristic on <= 0.5
5032

[2516.0, 2516.0]
positive

Number of populations <= 3.5
1641

[1077.4161, 92.0488]
negative

True

Termination heuristic type <= 0.5
3391

[1438.5839, 2423.9512]
positive

False

853
[545.8097, 88.2134]

negative

788
[531.6065, 3.8354]

negative

Problem rate of change <= 0.8848
1698

[794.028, 1004.8659]
positive

Certainty threshold <= 0.8075
1693

[644.5559, 1419.0854]
positive

777
[390.9269, 381.6189]

negative

Certainty threshold <= 0.8041
921

[403.1011, 623.247]
positive

474
[213.7247, 302.9939]

positive

447
[189.3763, 320.253]

positive

Problem rate of change <= 0.9374
861

[348.3172, 663.5183]
positive

Evolvability type <= 0.5
832

[296.2387, 755.5671]
positive

422
[165.028, 341.3476]

positive

439
[183.2892, 322.1707]

positive

428
[158.2645, 372.0305]

positive

404
[137.9742, 383.5366]

positive

Figure B.11: MM, particle filter, eventual fitness

Termination heuristic on <= 0.5
4979

[2489.5, 2489.5]
negative

Fitness evaluations <= 4250.0
1616

[649.9792, 931.7792]
positive

True

Population size <= 73.0
3363

[1839.5208, 1557.7208]
negative

False

615
[190.099, 399.4613]

positive

1001
[459.8802, 532.3179]

positive

Population size <= 55.0
2437

[1368.2574, 1101.1936]
negative

926
[471.2634, 456.5272]

negative

Population size <= 23.0
1809

[986.9211, 839.9388]
negative

628
[381.3363, 261.2548]

negative

741
[389.3045, 355.7702]

negative

Number of populations <= 3.5
1068

[597.6166, 484.1685]
negative

530
[310.7606, 229.1553]

negative

538
[286.856, 255.0133]

negative

Figure B.12: MM, particle filter, eventual evolvability

222

Termination heuristic on <= 0.5
4970

[2485.0, 2485.0]
negative

Tournament size <= 17.0
1685

[1118.1835, 6.0511]
negative

True

Termination heuristic type <= 0.5
3285

[1366.8165, 2478.9489]
positive

False

752
[497.9307, 6.0511]

negative

933
[620.2528, 0.0]

negative

Population size <= 45.0
1666

[771.8258, 1018.608]
positive

Generations between evolvability selection <= 22.5
1619

[594.9906, 1460.3409]
positive

736
[274.5599, 651.5057]

positive

930
[497.2659, 367.1023]

negative

631
[258.6049, 488.125]

positive

Fitness evaluations <= 4750.0
988

[336.3858, 972.2159]
positive

429
[161.5449, 375.1705]

positive

559
[174.8408, 597.0455]

positive

Figure B.13: SM, point estimate, eventual fitness

Problem rate of change <= 0.3152
5033

[2516.5, 2516.5]
positive

842
[458.6931, 386.8607]

negative

True

Population size <= 43.0
4191

[2057.8069, 2129.6393]
positive

False

Intermediate population size <= 3.5
1779

[917.3863, 864.2429]
negative

Tournament size <= 53.0
2412

[1140.4206, 1265.3964]
positive

541
[258.8039, 281.0933]

positive

Tournament size <= 9.0
1238

[658.5824, 583.1496]
negative

594
[297.7297, 296.3391]

negative

644
[360.8526, 286.8105]

negative

Intermediate population size <= 7.5
1803

[820.5978, 974.7745]
positive

609
[319.8227, 290.6219]

negative

Population size <= 71.0
1251

[596.5115, 651.7554]
positive

552
[224.0863, 323.0191]

positive

721
[361.9047, 359.2278]

negative

530
[234.6068, 292.5276]

positive

Figure B.14: SM, point estimate, eventual evolvability

223

Termination heuristic on <= 0.5
5048

[2524.0, 2524.0]
positive

Number of populations <= 3.5
1706

[1145.5665, 103.3112]
negative

True

Fitness evaluations <= 4750.0
3342

[1378.4335, 2420.6888]
positive

False

861
[562.3564, 92.6239]

negative

845
[583.2101, 10.6874]

negative

Population size <= 35.0
1448

[652.0275, 908.4263]
positive

Certainty threshold <= 0.8928
1894

[726.4059, 1512.2625]
positive

518
[201.5863, 406.12]

positive

930
[450.4412, 502.3063]

positive

Population size <= 65.0
1381

[551.2344, 1047.362]
positive

513
[175.1716, 464.9005]

positive

Evolvability type <= 0.5
904

[344.7822, 726.741]
positive

477
[206.4522, 320.621]

positive

421
[152.2324, 359.808]

positive

483
[192.5497, 366.933]

positive

Figure B.15: SM, Kalman filter, eventual fitness

Termination heuristic on <= 0.5
4881

[2440.5, 2440.5]
negative

Problem rate of change <= 0.6968
1641

[773.7184, 866.2391]
positive

True

Problem rate of change <= 0.5428
3240

[1666.7816, 1574.2609]
negative

False

566
[245.7694, 319.4009]

positive

Certainty threshold <= 0.7957
1075

[527.949, 546.8381]
positive

540
[277.1227, 263.0361]

negative

535
[250.8264, 283.8021]

positive

882
[477.3792, 405.4315]

negative

Population size <= 73.0
2358

[1189.4024, 1168.8294]
negative

Tournament size <= 17.0
1689

[876.8809, 812.8408]
negative

669
[312.5215, 355.9887]

positive

909
[456.1399, 452.8967]

negative

780
[420.741, 359.9441]

negative

Figure B.16: SM, Kalman filter, eventual evolvability

224

Termination heuristic on <= 0.5
5034

[2517.0, 2517.0]
positive

Number of populations <= 3.5
1634

[1103.6184, 80.3298]
negative

True

Fitness evaluations <= 3750.0
3400

[1413.3816, 2436.6702]
positive

False

794
[522.2914, 74.9745]

negative

840
[581.327, 5.3553]

negative

Termination heuristic type <= 0.5
1089

[511.1788, 630.1426]
positive

Evolvability type <= 0.5
2311

[902.2028, 1806.5277]
positive

574
[306.9851, 235.634]

negative

515
[204.1937, 394.5085]

positive

Certainty threshold <= 0.7776
1181

[437.5579, 983.5936]
positive

Population size <= 55.0
1130

[464.6449, 822.934]
positive

509
[202.8046, 387.3681]

positive

672
[234.7533, 596.2255]

positive

615
[237.5315, 487.334]

positive

515
[227.1134, 335.6]

positive

Figure B.17: SM, particle filter, eventual fitness

Fitness evaluations <= 5750.0
5030

[2515.0, 2515.0]
negative

Population size <= 65.0
2688

[1390.6348, 1300.8289]
negative

True

Certainty threshold <= 0.8869
2342

[1124.3652, 1214.1711]
positive

False

Crossover rate <= 0.35
1734

[940.2647, 799.1769]
negative

954
[450.3701, 501.652]

positive

862
[437.8888, 424.6229]

negative

872
[502.3759, 374.554]

negative

Certainty threshold <= 0.7292
1696

[776.9665, 913.7577]
positive

646
[347.3987, 300.4135]

negative

713
[308.9144, 400.5513]

positive

983
[468.0521, 513.2064]

positive

Figure B.18: SM, particle filter, eventual evolvability

225

Termination heuristic on <= 0.5
4965

[2482.5, 2482.5]
positive

Fitness evaluations <= 5250.0
1711

[981.7464, 669.7437]
negative

True

Termination heuristic type <= 0.5
3254

[1500.7536, 1812.7563]
positive

False

793
[415.7096, 368.2354]

negative

918
[566.0369, 301.5082]

negative

Problem rate of change <= 0.7757
1621

[801.1857, 824.2048]
positive

Population size <= 31.0
1633

[699.5678, 988.5515]
positive

644
[292.2564, 365.7641]

positive

977
[508.9293, 458.4408]

negative

543
[262.023, 285.4443]

positive

Fitness evaluations <= 4750.0
1090

[437.5448, 703.1073]
positive

470
[177.2015, 320.0436]

positive

620
[260.3434, 383.0637]

positive

Figure B.19: MVPR, point estimate, eventual fitness

Termination heuristic on <= 0.5
5034

[2517.0, 2517.0]
negative

Generations between evolvability selection <= 19.5
1706

[806.1383, 897.4669]
positive

True

Problem rate of change <= 1.5804
3328

[1710.8617, 1619.5331]
negative

False

537
[237.2203, 298.1812]

positive

Problem rate of change <= 1.0904
1169

[568.918, 599.2857]
positive

646
[302.9437, 342.0314]

positive

523
[265.9743, 257.2544]

negative

Problem rate of change <= 0.8079
2622

[1316.5214, 1305.7607]
negative

706
[394.3403, 313.7724]

negative

Number of populations <= 3.5
1371

[719.8764, 652.8804]
negative

Termination heuristic type <= 0.5
1251

[596.645, 652.8804]
positive

705
[388.1787, 318.6446]

negative

666
[331.6977, 334.2358]

positive

646
[321.4284, 324.4913]

positive

605
[275.2166, 328.3891]

positive

Figure B.20: MVPR, point estimate, eventual evolvability

226

Termination heuristic on <= 0.5
5044

[2522.0, 2522.0]
negative

Number of populations <= 3.5
1682

[936.1512, 709.8699]
negative

True

Certainty threshold <= 0.6632
3362

[1585.8488, 1812.1301]
positive

False

824
[421.9152, 398.3357]

negative

858
[514.2361, 311.5342]

negative

508
[262.2949, 242.5686]

negative

Problem rate of change <= 1.6187
2854

[1323.5539, 1569.5615]
positive

Problem rate of change <= 0.6365
2286

[1080.2408, 1229.4899]
positive

568
[243.313, 340.0717]

positive

895
[399.482, 513.6747]

positive

Fitness evaluations <= 4750.0
1391

[680.7588, 715.8152]
positive

586
[272.6486, 321.0467]

positive

805
[408.1102, 394.7685]

negative

Figure B.21: MVPR, Kalman filter, eventual fitness

227

Certainty threshold <= 0.6432
4991

[2495.5, 2495.5]
negative

550
[303.2102, 246.6424]

negative

True

Problem rate of change <= 0.4319
4441

[2192.2898, 2248.8576]
positive

False

914
[424.8933, 489.2744]

positive

Tournament size <= 47.0
3527

[1767.3965, 1759.5832]
negative

Problem rate of change <= 0.7291
2846

[1401.3499, 1444.7632]
positive

681
[366.0466, 314.82]

negative

537
[288.2492, 248.6476]

negative

Tournament size <= 17.0
2309

[1113.1007, 1196.1155]
positive

Tournament size <= 7.0
1275

[639.3347, 635.6557]
negative

Problem rate of change <= 1.364
1034

[473.766, 560.4598]
positive

649
[309.1946, 339.8853]

positive

626
[330.1401, 295.7704]

negative

512
[224.4155, 287.7495]

positive

522
[249.3505, 272.7103]

positive

Figure B.22: MVPR, Kalman filter, eventual evolvability

228

Termination heuristic on <= 0.5
4946

[2473.0, 2473.0]
negative

Problem rate of change <= 0.7098
1598

[903.4671, 644.8614]
negative

True

Evolvability type <= 0.5
3348

[1569.5329, 1828.1386]
positive

False

529
[275.1506, 248.7853]

negative

Evolvability type <= 0.5
1069

[628.3165, 396.0761]
negative

536
[293.6058, 230.2192]

negative

533
[334.7107, 165.8569]

negative

Termination heuristic type <= 0.5
1755

[780.9915, 1019.8959]
positive

Fitness evaluations <= 5250.0
1593

[788.5414, 808.2427]
positive

899
[435.3755, 470.3403]

positive

856
[345.616, 549.5556]

positive

759
[346.4549, 428.2573]

positive

834
[442.0865, 379.9855]

negative

Figure B.23: MVPR, particle filter, eventual fitness

Termination heuristic on <= 0.5
4985

[2492.5, 2492.5]
positive

Certainty threshold <= 0.8252
1615

[740.4802, 869.7234]
positive

True

Fitness evaluations <= 3250.0
3370

[1752.0198, 1622.7766]
negative

False

923
[447.6115, 474.3946]

positive

692
[292.8688, 395.3288]

positive

844
[403.9927, 438.7186]

positive

Population size <= 45.0
2526

[1348.0271, 1184.058]
negative

Fitness evaluations <= 6750.0
1125

[629.3563, 500.4284]
negative

Certainty threshold <= 0.8569
1401

[718.6708, 683.6296]
negative

554
[325.0635, 232.3762]

negative

571
[304.2927, 268.0522]

negative

900
[476.6906, 425.2195]

negative

501
[241.9802, 258.4101]

positive

Figure B.24: MVPR, particle filter, eventual evolvability

229

230

Appendix C

EGS-AR Data

This chapter lists the results from the experiments described in Section 5.4.

The results tables are organized by fitness function, evolvability estimation

method, and whether the EGS-AR algorithm is being compared with se-

lection for fitness alone or to the EGS algorithm. For each, there are two

tables, one for relative eventual fitness (eventual fitness for EGS-AR minus

eventual fitness when selecting for fitness alone, or for EGS), and one for

relative eventual evolvability. The fields of the tables are the same as those

in Appendix A, with the following additional fields in the tables comparing

the EGS-AR algorithm with the EGS algorithm.

• All data empirical median: The empirical median relative eventual

fitness or evolvability of the whole dataset. Values which lie outside

of the inferred highest density interval (HDI) of the mean, presumably

because the data distribution is not normal, are in italics.

• All data mean HDI: The highest density interval (95%) of the dis-

tribution representing our state of belief of the mean value of the whole

dataset. This is the highest density interval in which we believe the

231

mean value falls with probability 0.95.

• All data positive mean probability: The probability represent-

ing our belief that the mean relative eventual fitness or evolvability is

positive. High values mean that we believe that, averaging over the pa-

rameter distributions described in Section 4.7, the EGS-AR algorithm

leads to a greater mean eventual fitness or evolvability than the EGS

algorithm. Probabilities greater than 0.95 are in boldface.

232

Table C.1: SEM, Kalman filter, eventual fitness, compared to selection for

fitness

Proportion positive 0.20

Accuracy, sensitivity, specificity 0.61, 0.82, 0.56

Negative empirical median -1355.16

Negative mean HDI [-1150.90, -1004.82]

Positive empirical median -457.84

Positive mean HDI [-597.47, -453.12]

Different means probability 1.00

Positive mean probability 0.00

Table C.2: SEM, Kalman filter, eventual fitness, compared to EGS

Proportion positive 0.59

All data empirical median 84.05

All data mean HDI [-1009.12, 619.87]

All data positive mean probability 0.80

Accuracy, sensitivity, specificity 0.58, 0.56, 0.60

Negative empirical median 18.32

Negative mean HDI [-16.85, 52.77]

Positive empirical median 147.76

Positive mean HDI [112.18, 147.63]

Different means probability 1.00

Positive mean probability 1.00

233

Table C.3: SEM, Kalman filter, eventual evolvability, compared to selection

for fitness

Proportion positive 0.47

Accuracy, sensitivity, specificity 0.58, 0.45, 0.69

Negative empirical median -30.72

Negative mean HDI [-38.84, -24.02]

Positive empirical median 36.00

Positive mean HDI [23.41, 45.84]

Different means probability 1.00

Positive mean probability 1.00

Table C.4: SEM, Kalman filter, eventual evolvability, compared to EGS

Proportion positive 0.53

All data empirical median 12.47

All data mean HDI [-193.05, 757.29]

All data positive mean probability 0.88

Accuracy, sensitivity, specificity 0.51, 0.43, 0.59

Negative empirical median 10.22

Negative mean HDI [2.14, 16.40]

Positive empirical median 16.19

Positive mean HDI [11.25, 25.87]

Different means probability 0.91

Positive mean probability 1.00

234

Table C.5: SEM, particle filter, eventual fitness, compared to selection for

fitness

Proportion positive 0.22

Accuracy, sensitivity, specificity 0.66, 0.76, 0.63

Negative empirical median -1205.16

Negative mean HDI [-1048.84, -933.03]

Positive empirical median -292.13

Positive mean HDI [-415.13, -290.51]

Different means probability 1.00

Positive mean probability 0.00

Table C.6: SEM, particle filter, eventual fitness, compared to EGS

Proportion positive 0.61

All data empirical median 106.64

All data mean HDI [100.80, 536.82]

All data positive mean probability 0.95

Accuracy, sensitivity, specificity 0.59, 0.54, 0.66

Negative empirical median 10.76

Negative mean HDI [-14.93, 44.49]

Positive empirical median 176.15

Positive mean HDI [128.22, 178.44]

Different means probability 1.00

Positive mean probability 1.00

235

Table C.7: SEM, particle filter, eventual evolvability, compared to selection

for fitness

Proportion positive 0.50

Accuracy, sensitivity, specificity 0.56, 0.48, 0.64

Negative empirical median -22.10

Negative mean HDI [-28.57, -14.10]

Positive empirical median 41.73

Positive mean HDI [39.19, 57.08]

Different means probability 1.00

Positive mean probability 1.00

Table C.8: SEM, particle filter, eventual evolvability, compared to EGS

Proportion positive 0.54

All data empirical median 12.67

All data mean HDI [-3.22, 16.90]

All data positive mean probability 0.92

Accuracy, sensitivity, specificity 0.52, 0.46, 0.60

Negative empirical median 5.46

Negative mean HDI [-1.40, 11.53]

Positive empirical median 20.53

Positive mean HDI [18.41, 29.76]

Different means probability 1.00

Positive mean probability 1.00

236

Table C.9: MM, Kalman filter, eventual fitness, compared to selection for

fitness

Proportion positive 0.27

Accuracy, sensitivity, specificity 0.62, 0.83, 0.55

Negative empirical median -7.31

Negative mean HDI [-7.66, -7.18]

Positive empirical median -1.28

Positive mean HDI [-1.39, -1.03]

Different means probability 1.00

Positive mean probability 0.00

Table C.10: MM, Kalman filter, eventual fitness, compared to EGS

Proportion positive 0.51

All data empirical median 0.06

All data mean HDI [0.03, 3.18]

All data positive mean probability 0.99

Accuracy, sensitivity, specificity 0.49, 0.39, 0.60

Negative empirical median 0.09

Negative mean HDI [-0.04, 0.31]

Positive empirical median -0.03

Positive mean HDI [-0.26, 0.12]

Different means probability 0.07

Positive mean probability 0.24

237

Table C.11: MM, Kalman filter, eventual evolvability, compared to selection

for fitness

Proportion positive 0.56

Accuracy, sensitivity, specificity 0.55, 0.53, 0.59

Negative empirical median 0.03

Negative mean HDI [-0.03, 0.10]

Positive empirical median 0.47

Positive mean HDI [0.43, 0.57]

Different means probability 1.00

Positive mean probability 1.00

Table C.12: MM, Kalman filter, eventual evolvability, compared to EGS

Proportion positive 0.50

All data empirical median 0.00

All data mean HDI [-0.52, 0.02]

All data positive mean probability 0.70

Accuracy, sensitivity, specificity 0.49, 0.52, 0.46

Negative empirical median 0.07

Negative mean HDI [-0.03, 0.10]

Positive empirical median -0.00

Positive mean HDI [-0.07, 0.06]

Different means probability 0.31

Positive mean probability 0.64

238

Table C.13: MM, particle filter, eventual fitness, compared to selection for

fitness

Proportion positive 0.30

Accuracy, sensitivity, specificity 0.57, 0.68, 0.52

Negative empirical median -5.10

Negative mean HDI [-5.73, -5.21]

Positive empirical median -1.57

Positive mean HDI [-1.87, -1.48]

Different means probability 1.00

Positive mean probability 0.00

Table C.14: MM, particle filter, eventual fitness, compared to EGS

Proportion positive 0.54

All data empirical median 0.49

All data mean HDI [0.58, 0.83]

All data positive mean probability 0.97

Accuracy, sensitivity, specificity 0.58, 0.25, 0.94

Negative empirical median -0.31

Negative mean HDI [-0.37, -0.09]

Positive empirical median 6.17

Positive mean HDI [5.73, 6.64]

Different means probability 1.00

Positive mean probability 1.00

239

Table C.15: MM, particle filter, eventual evolvability, compared to selection

for fitness

Proportion positive 0.59

Accuracy, sensitivity, specificity 0.57, 0.42, 0.78

Negative empirical median 0.07

Negative mean HDI [-0.00, 0.11]

Positive empirical median 1.35

Positive mean HDI [1.50, 1.76]

Different means probability 1.00

Positive mean probability 1.00

Table C.16: MM, particle filter, eventual evolvability, compared to EGS

Proportion positive 0.54

All data empirical median 0.19

All data mean HDI [-2.41, 1.27]

All data positive mean probability 0.87

Accuracy, sensitivity, specificity 0.54, 0.35, 0.76

Negative empirical median 0.03

Negative mean HDI [-0.03, 0.09]

Positive empirical median 0.83

Positive mean HDI [0.92, 1.21]

Different means probability 1.00

Positive mean probability 1.00

240

Table C.17: SM, Kalman filter, eventual fitness, compared to selection for

fitness

Proportion positive 0.29

Accuracy, sensitivity, specificity 0.65, 0.83, 0.57

Negative empirical median -9.35

Negative mean HDI [-10.07, -9.39]

Positive empirical median -0.52

Positive mean HDI [-1.01, -0.65]

Different means probability 1.00

Positive mean probability 0.00

Table C.18: SM, Kalman filter, eventual fitness, compared to EGS

Proportion positive 0.51

All data empirical median 0.10

All data mean HDI [0.08, 0.32]

All data positive mean probability 1.00

Accuracy, sensitivity, specificity 0.52, 0.54, 0.50

Negative empirical median -0.02

Negative mean HDI [-0.17, 0.21]

Positive empirical median 0.27

Positive mean HDI [0.18, 0.53]

Different means probability 1.00

Positive mean probability 1.00

241

Table C.19: SM, Kalman filter, eventual evolvability, compared to selection

for fitness

Proportion positive 0.51

Accuracy, sensitivity, specificity 0.50, 0.60, 0.39

Negative empirical median 0.14

Negative mean HDI [-0.01, 0.20]

Positive empirical median 0.09

Positive mean HDI [0.05, 0.25]

Different means probability 0.69

Positive mean probability 1.00

Table C.20: SM, Kalman filter, eventual evolvability, compared to EGS

Proportion positive 0.51

All data empirical median 0.04

All data mean HDI [-0.01, 0.19]

All data positive mean probability 0.90

Accuracy, sensitivity, specificity 0.51, 0.45, 0.58

Negative empirical median -0.10

Negative mean HDI [-0.19, -0.01]

Positive empirical median 0.02

Positive mean HDI [-0.12, 0.07]

Different means probability 0.91

Positive mean probability 0.31

242

Table C.21: SM, particle filter, eventual fitness, compared to selection for

fitness

Proportion positive 0.33

Accuracy, sensitivity, specificity 0.55, 0.89, 0.38

Negative empirical median -9.22

Negative mean HDI [-9.80, -8.99]

Positive empirical median -0.76

Positive mean HDI [-1.17, -0.87]

Different means probability 1.00

Positive mean probability 0.00

Table C.22: SM, particle filter, eventual fitness, compared to EGS

Proportion positive 0.55

All data empirical median 0.54

All data mean HDI [0.66, 1.33]

All data positive mean probability 1.00

Accuracy, sensitivity, specificity 0.58, 0.27, 0.96

Negative empirical median -0.20

Negative mean HDI [-0.33, -0.06]

Positive empirical median 10.35

Positive mean HDI [9.49, 10.59]

Different means probability 1.00

Positive mean probability 1.00

243

Table C.23: SM, particle filter, eventual evolvability, compared to selection

for fitness

Proportion positive 0.52

Accuracy, sensitivity, specificity 0.52, 0.46, 0.58

Negative empirical median 0.06

Negative mean HDI [-0.03, 0.15]

Positive empirical median 0.30

Positive mean HDI [0.26, 0.47]

Different means probability 1.00

Positive mean probability 1.00

Table C.24: SM, particle filter, eventual evolvability, compared to EGS

Proportion positive 0.51

All data empirical median 0.07

All data mean HDI [0.02, 0.11]

All data positive mean probability 0.98

Accuracy, sensitivity, specificity 0.52, 0.50, 0.55

Negative empirical median -0.04

Negative mean HDI [-0.12, 0.06]

Positive empirical median 0.23

Positive mean HDI [0.12, 0.33]

Different means probability 1.00

Positive mean probability 1.00

244

Table C.25: MVPR, Kalman filter, eventual fitness, compared to selection

for fitness

Proportion positive 0.42

Accuracy, sensitivity, specificity 0.50, 0.62, 0.41

Negative empirical median -2.09

Negative mean HDI [-2.36, -1.73]

Positive empirical median -1.30

Positive mean HDI [-1.47, -0.87]

Different means probability 1.00

Positive mean probability 0.00

Table C.26: MVPR, Kalman filter, eventual fitness, compared to EGS

Proportion positive 0.50

All data empirical median -0.07

All data mean HDI [-1.60, 1.82]

All data positive mean probability 0.31

Accuracy, sensitivity, specificity 0.50, 0.50, 0.50

Negative empirical median -0.11

Negative mean HDI [-0.62, -0.04]

Positive empirical median -0.16

Positive mean HDI [-0.50, 0.22]

Different means probability 0.85

Positive mean probability 0.36

245

Table C.27: MVPR, Kalman filter, eventual evolvability, compared to selec-

tion for fitness

Proportion positive 0.51

Accuracy, sensitivity, specificity 0.49, 0.35, 0.65

Negative empirical median 0.45

Negative mean HDI [-0.01, 1.53]

Positive empirical median 0.52

Positive mean HDI [-0.04, 1.67]

Different means probability 0.63

Positive mean probability 0.95

Table C.28: MVPR, Kalman filter, eventual evolvability, compared to EGS

Proportion positive 0.51

All data empirical median 0.28

All data mean HDI [-3.87, 0.96]

All data positive mean probability 0.95

Accuracy, sensitivity, specificity 0.50, 0.52, 0.48

Negative empirical median 0.38

Negative mean HDI [-0.01, 1.47]

Positive empirical median 0.28

Positive mean HDI [0.06, 1.41]

Different means probability 0.49

Positive mean probability 0.98

246

Table C.29: MVPR, particle filter, eventual fitness, compared to selection

for fitness

Proportion positive 0.42

Accuracy, sensitivity, specificity 0.54, 0.49, 0.58

Negative empirical median -2.16

Negative mean HDI [-2.53, -1.91]

Positive empirical median -0.95

Positive mean HDI [-1.30, -0.62]

Different means probability 1.00

Positive mean probability 0.00

Table C.30: MVPR, particle filter, eventual fitness, compared to EGS

Proportion positive 0.51

All data empirical median 0.18

All data mean HDI [-0.01, 0.42]

All data positive mean probability 1.00

Accuracy, sensitivity, specificity 0.51, 0.56, 0.46

Negative empirical median -0.05

Negative mean HDI [-0.28, 0.40]

Positive empirical median 0.29

Positive mean HDI [0.02, 0.60]

Different means probability 0.84

Positive mean probability 0.98

247

Table C.31: MVPR, particle filter, eventual evolvability, compared to selec-

tion for fitness

Proportion positive 0.51

Accuracy, sensitivity, specificity 0.51, 0.51, 0.50

Negative empirical median 0.41

Negative mean HDI [-0.10, 1.37]

Positive empirical median 0.86

Positive mean HDI [0.25, 1.73]

Different means probability 0.86

Positive mean probability 1.00

Table C.32: MVPR, particle filter, eventual evolvability, compared to EGS

Proportion positive 0.49

All data empirical median -0.25

All data mean HDI [-0.75, 0.37]

All data positive mean probability 0.26

Accuracy, sensitivity, specificity 0.50, 0.39, 0.60

Negative empirical median -0.05

Negative mean HDI [-0.72, 0.55]

Positive empirical median -0.40

Positive mean HDI [-0.95, 0.62]

Different means probability 0.44

Positive mean probability 0.35

248

Appendix D

EGS-AR Decision Trees

This chapter provides the decision trees that are used as part of the data

analysis pipeline for the experiments described in Section 5.4. The purpose

of these trees is to identify regions of the parameter space in which the

EGS-AR algorithm leads to greater mean eventual fitness or evolvability

than selection for fitness alone or than the EGS algorithm. The feature

labels for the termination heuristic in the trees have the following meaning.

‘Termination heuristic on’ is a feature whose value is one if a termination

heuristic is used and zero otherwise. ‘Termination heuristic type’ takes value

zero for the ‘halfway’ termination heuristic and the value one for the ‘relative’

termination heuristic.

249

Termination heuristic on <= 0.5
5021

[2510.5, 2510.5]
negative

Population size <= 45.0
1635

[979.7228, 212.7542]
negative

True

Population size <= 19.0
3386

[1530.7772, 2297.7458]
positive

False

715
[403.9375, 184.387]

negative

920
[575.7853, 28.3672]

negative

581
[192.7739, 654.8103]

positive

Termination heuristic type <= 0.5
2805

[1338.0033, 1642.9355]
positive

Population size <= 55.0
1385

[734.9506, 534.2495]
negative

Certainty threshold <= 0.763
1420

[603.0527, 1108.686]
positive

619
[306.2823, 321.4953]

positive

766
[428.6684, 212.7542]

negative

596
[268.2348, 408.9609]

positive

Tournament size <= 27.0
824

[334.8179, 699.725]
positive

430
[180.0914, 345.1347]

positive

394
[154.7264, 354.5904]

positive

Figure D.1: SEM, Kalman filter, eventual fitness, compared to selection for

fitness

Termination heuristic on <= 0.5
4994

[2497.0, 2497.0]
negative

Number of populations <= 3.5
1655

[550.7016, 1020.8823]
positive

True

Termination heuristic type <= 0.5
3339

[1946.2984, 1476.1177]
negative

False

793
[369.5657, 415.3173]

positive

862
[181.1358, 605.565]

positive

Number of populations <= 3.5
1670

[903.2478, 787.3194]
negative

Certainty threshold <= 0.7966
1669

[1043.0506, 688.7983]
negative

838
[502.0745, 360.9609]

negative

832
[401.1733, 426.3585]

positive

838
[494.7804, 366.0568]

negative

831
[548.2702, 322.7415]

negative

Figure D.2: SEM, Kalman filter, eventual fitness, compared to EGS

250

Population size <= 21.0
5021

[2510.5, 2510.5]
negative

Evolvability type <= 0.5
1009

[392.9072, 633.2793]
positive

True

Tournament size <= 29.0
4012

[2117.5928, 1877.2207]
negative

False

507
[178.2548, 340.3338]

positive

502
[214.6524, 292.9455]

positive

Population size <= 41.0
2164

[1249.6504, 888.5296]
negative

Evolvability type <= 0.5
1848

[867.9424, 988.6911]
positive

910
[470.3688, 437.2643]

negative

Number of populations <= 3.5
1254

[779.2816, 451.2653]
negative

659
[384.5078, 266.0204]

negative

595
[394.7738, 185.245]

negative

908
[386.3743, 532.0408]

positive

940
[481.568, 456.6504]

negative

Figure D.3: SEM, Kalman filter, eventual evolvability, compared to selection

for fitness

Number of populations <= 3.5
5022

[2511.0, 2511.0]
positive

Population size <= 47.0
2562

[1357.04, 1212.8282]
negative

True

Termination heuristic on <= 0.5
2460

[1153.96, 1298.1718]
positive

False

Evolvability type <= 0.5
1197

[658.9524, 544.3029]
negative

Problem rate of change <= 0.9159
1365

[698.0876, 668.5253]
negative

603
[310.9663, 293.0132]

negative

594
[347.9861, 251.2897]

negative

626
[333.1782, 294.9097]

negative

739
[364.9094, 373.6156]

positive

857
[337.409, 510.1654]

positive

Population size <= 69.0
1603

[816.551, 788.0064]
negative

Population size <= 35.0
1095

[538.3736, 555.682]
positive

508
[278.1773, 232.3244]

negative

544
[290.8698, 255.0827]

negative

551
[247.5038, 300.5993]

positive

Figure D.4: SEM, Kalman filter, eventual evolvability, compared to EGS

251

Termination heuristic on <= 0.5
5036

[2518.0, 2518.0]
positive

Population size <= 39.0
1663

[1003.3459, 227.8835]
negative

True

Termination heuristic type <= 0.5
3373

[1514.6541, 2290.1165]
positive

False

630
[357.7872, 164.7079]

negative

1033
[645.5587, 63.1756]

negative

Population size <= 41.0
1672

[839.5474, 823.5394]
negative

Population size <= 23.0
1701

[675.1066, 1466.5771]
positive

677
[284.5597, 527.9677]

positive

995
[554.9878, 295.5717]

negative

389
[135.5352, 401.6165]

positive

Tournament size <= 23.0
1312

[539.5714, 1064.9606]
positive

557
[251.8, 372.2849]

positive

755
[287.7714, 692.6756]

positive

Figure D.5: SEM, particle filter, eventual fitness, compared to selection for

fitness

Termination heuristic on <= 0.5
5043

[2521.5, 2521.5]
negative

Number of populations <= 3.5
1691

[524.0663, 1046.2925]
positive

True

Termination heuristic type <= 0.5
3352

[1997.4337, 1475.2075]
negative

False

847
[379.7205, 450.8481]

positive

844
[144.3458, 595.4444]

positive

Tournament size <= 13.0
1672

[929.795, 777.4083]
negative

Certainty threshold <= 0.7939
1680

[1067.6387, 697.7991]
negative

617
[302.9961, 311.9381]

positive

Problem rate of change <= 1.016
1055

[626.7989, 465.4702]
negative

546
[357.6135, 220.1438]

negative

509
[269.1854, 245.3264]

negative

810
[544.8729, 317.6245]

negative

870
[522.7659, 380.1746]

negative

Figure D.6: SEM, particle filter, eventual fitness, compared to EGS

252

Population size <= 19.0
5016

[2508.0, 2508.0]
positive

929
[343.52, 582.3377]

positive

True

Tournament size <= 19.0
4087

[2164.48, 1925.6623]
negative

False

Population size <= 33.0
1534

[939.36, 599.1169]
negative

Population size <= 47.0
2553

[1225.12, 1326.5455]
positive

523
[277.6533, 245.7662]

negative

Problem rate of change <= 0.9599
1011

[661.7067, 353.3506]
negative

511
[335.4133, 177.6623]

negative

500
[326.2933, 175.6883]

negative

614
[241.1733, 371.1169]

positive

Tournament size <= 39.0
1939

[983.9467, 955.4286]
negative

740
[416.48, 324.7273]

negative

Problem rate of change <= 0.9355
1199

[567.4667, 630.7013]
positive

549
[239.1467, 308.9351]

positive

650
[328.32, 321.7662]

negative

Figure D.7: SEM, particle filter, eventual evolvability, compared to selection

for fitness

253

Termination heuristic on <= 0.5
4972

[2486.0, 2486.0]
positive

Number of populations <= 3.5
1644

[707.5208, 921.5023]
positive

True

Certainty threshold <= 0.6589
3328

[1778.4792, 1564.4977]
negative

False

834
[410.7491, 422.4331]

positive

810
[296.7716, 499.0692]

positive

529
[259.1375, 269.1609]

positive

Certainty threshold <= 0.9046
2799

[1519.3417, 1295.3368]
negative

Fitness evaluations <= 3250.0
2060

[1149.4524, 926.1752]
negative

739
[369.8893, 369.1617]

negative

523
[308.5995, 220.5624]

negative

Fitness evaluations <= 6250.0
1537

[840.8529, 705.6128]
negative

620
[315.051, 305.6098]

negative

917
[525.8019, 400.003]

negative

Figure D.8: SEM, particle filter, eventual evolvability, compared to EGS

254

Termination heuristic on <= 0.5
5009

[2504.5, 2504.5]
positive

Number of populations <= 3.5
1637

[1052.606, 197.291]
negative

True

Termination heuristic type <= 0.5
3372

[1451.894, 2307.209]
positive

False

830
[508.0596, 168.0627]

negative

807
[544.5463, 29.2283]

negative

Population size <= 37.0
1713

[801.3299, 1002.8961]
positive

Tournament size <= 27.0
1659

[650.5642, 1304.3129]
positive

629
[267.7984, 438.4245]

positive

Number of populations <= 3.5
1084

[533.5315, 564.4716]
positive

540
[254.7183, 310.5507]

positive

544
[278.8132, 253.9209]

negative

Problem rate of change <= 1.0577
994

[410.3029, 727.054]
positive

665
[240.2613, 577.2589]

positive

531
[234.7538, 347.0861]

positive

463
[175.5491, 379.9679]

positive

Figure D.9: MM, Kalman filter, eventual fitness, compared to selection for

fitness

Certainty threshold <= 0.7627
4997

[2498.5, 2498.5]
negative

Certainty threshold <= 0.698
2062

[1076.4329, 986.7694]
negative

True

Population size <= 25.0
2935

[1422.0671, 1511.7306]
positive

False

Population size <= 47.0
1250

[605.1134, 644.3604]
positive

812
[471.3195, 342.409]

negative

559
[255.4247, 302.9382]

positive

691
[349.6886, 341.4222]

negative

713
[367.9333, 345.3693]

negative

Problem rate of change <= 0.7737
2222

[1054.1339, 1166.3614]
positive

857
[381.1099, 474.6361]

positive

Tournament size <= 21.0
1365

[673.0239, 691.7253]
positive

515
[238.1937, 276.2954]

positive

850
[434.8302, 415.4299]

negative

Figure D.10: MM, Kalman filter, eventual fitness, compared to EGS

255

Termination heuristic on <= 0.5
5022

[2511.0, 2511.0]
negative

Fitness evaluations <= 5250.0
1676

[672.8092, 971.3296]
positive

True

Fitness evaluations <= 4250.0
3346

[1838.1908, 1539.6704]
negative

False

779
[246.2862, 505.0914]

positive

897
[426.523, 466.2382]

positive

Problem rate of change <= 1.1671
1225

[625.7909, 601.7726]
negative

Population size <= 59.0
2121

[1212.3999, 937.8978]
negative

716
[343.6812, 369.557]

positive

509
[282.1097, 232.2155]

negative

Problem rate of change <= 1.018
1210

[715.3495, 515.9341]
negative

911
[497.0504, 421.9637]

negative

598
[336.9643, 268.358]

negative

612
[378.3852, 247.5761]

negative

Figure D.11: MM, Kalman filter, eventual evolvability, compared to selection

for fitness

256

Problem rate of change <= 0.3082
4927

[2463.5, 2463.5]
negative

774
[348.114, 426.764]

positive

True

Population size <= 87.0
4153

[2115.386, 2036.736]
negative

False

Certainty threshold <= 0.6588
3593

[1854.3005, 1737.3945]
negative

560
[261.0855, 299.3415]

positive

525
[251.1959, 274.0593]

positive

Population size <= 55.0
3068

[1603.1046, 1463.3352]
negative

Certainty threshold <= 0.9051
1899

[971.159, 927.352]
negative

Certainty threshold <= 0.8523
1169

[631.9456, 535.9832]
negative

Crossover rate <= 0.35
1382

[678.4267, 703.8571]
positive

517
[292.7322, 223.4949]

negative

710
[328.3348, 382.2672]

positive

672
[350.0919, 321.5899]

negative

675
[378.7718, 295.2964]

negative

494
[253.1738, 240.6868]

negative

Figure D.12: MM, Kalman filter, eventual evolvability, compared to EGS

257

Termination heuristic type <= 0.5
4976

[2488.0, 2488.0]
negative

Evolvability type <= 0.5
3340

[1834.9891, 1282.5087]
negative

True

Evolvability type <= 0.5
1636

[653.0109, 1205.4913]
positive

False

Fitness evaluations <= 4250.0
1702

[854.047, 843.8439]
negative

Termination heuristic on <= 0.5
1638

[980.9421, 438.6649]
negative

625
[338.6246, 251.144]

negative

Number of populations <= 3.5
1077

[515.4223, 592.6999]
positive

545
[250.9387, 323.1386]

positive

532
[264.4837, 269.5612]

positive

827
[570.3152, 45.2059]

negative

811
[410.6269, 393.459]

negative

Problem rate of change <= 0.9623
848

[302.267, 709.9004]
positive

788
[350.7438, 495.5908]

positive

430
[162.5398, 338.2073]

positive

418
[139.7272, 371.6931]

positive

Figure D.13: MM, particle filter, eventual fitness, compared to selection for

fitness

Termination heuristic on <= 0.5
5010

[2505.0, 2505.0]
positive

Evolvability type <= 0.5
1664

[652.7579, 980.2571]
positive

True

Population size <= 81.0
3346

[1852.2421, 1524.7429]
negative

False

821
[168.9881, 610.2626]

positive

843
[483.7698, 369.9945]

negative

Problem rate of change <= 0.7555
2698

[1464.5635, 1253.4136]
negative

648
[387.6786, 271.3293]

negative

Problem rate of change <= 0.3782
995

[572.1296, 435.7713]
negative

Tournament size <= 13.0
1703

[892.4339, 817.6422]
negative

498
[267.2884, 233.8731]

negative

497
[304.8413, 201.8982]

negative

719
[395.4101, 329.7976]

negative

984
[497.0238, 487.8446]

negative

Figure D.14: MM, particle filter, eventual fitness, compared to EGS

258

Termination heuristic on <= 0.5
4962

[2481.0, 2481.0]
negative

Evolvability type <= 0.5
1624

[530.9486, 1008.5435]
positive

True

Fitness evaluations <= 2250.0
3338

[1950.0514, 1472.4565]
negative

False

805
[199.2576, 544.6305]

positive

819
[331.691, 463.913]

positive

536
[268.5118, 267.6421]

negative

Population size <= 77.0
2802

[1681.5397, 1204.8144]
negative

Problem rate of change <= 1.4667
2134

[1304.8942, 900.637]
negative

668
[376.6454, 304.1774]

negative

Problem rate of change <= 0.9177
1548

[969.5583, 637.2432]
negative

586
[335.3359, 263.3938]

negative

Certainty threshold <= 0.7968
971

[586.8379, 414.6329]
negative

577
[382.7204, 222.6103]

negative

484
[290.3815, 208.1661]

negative

487
[296.4564, 206.4668]

negative

Figure D.15: MM, particle filter, eventual evolvability, compared to selection

for fitness

259

Termination heuristic on <= 0.5
4985

[2492.5, 2492.5]
positive

Evolvability type <= 0.5
1621

[675.9322, 925.8653]
positive

True

Tournament size <= 7.0
3364

[1816.5678, 1566.6347]
negative

False

803
[238.3094, 541.4037]

positive

818
[437.6228, 384.4616]

negative

722
[434.3731, 298.0971]

negative

Number of populations <= 3.5
2642

[1382.1947, 1268.5376]
negative

Certainty threshold <= 0.8139
1353

[665.1, 686.2733]
positive

Certainty threshold <= 0.7919
1289

[717.0947, 582.2643]
negative

738
[333.6332, 399.32]

positive

615
[331.4668, 286.9532]

negative

648
[380.2119, 275.8094]

negative

641
[336.8829, 306.4549]

negative

Figure D.16: MM, particle filter, eventual evolvability, compared to EGS

Termination heuristic on <= 0.5
4996

[2498.0, 2498.0]
positive

Number of populations <= 3.5
1647

[1113.9541, 96.3464]
negative

True

Termination heuristic type <= 0.5
3349

[1384.0459, 2401.6536]
positive

False

828
[546.4812, 82.3324]

negative

819
[567.4728, 14.014]

negative

Population size <= 63.0
1693

[771.0913, 1035.2861]
positive

Number of populations <= 3.5
1656

[612.9546, 1366.3675]
positive

Fitness evaluations <= 5750.0
1050

[436.6252, 746.2468]
positive

643
[334.4661, 289.0393]

negative

565
[255.3978, 350.3506]

positive

485
[181.2275, 395.8962]

positive

823
[331.6672, 611.3619]

positive

Crossover rate <= 0.35
833

[281.2874, 755.0056]
positive

412
[131.5473, 392.3927]

positive

421
[149.7401, 362.6129]

positive

Figure D.17: SM, Kalman filter, eventual fitness, compared to selection for

fitness

260

Termination heuristic on <= 0.5
5017

[2508.5, 2508.5]
positive

Evolvability type <= 0.5
1691

[764.2127, 923.2062]
positive

True

Certainty threshold <= 0.7648
3326

[1744.2873, 1585.2938]
negative

False

865
[409.217, 454.7573]

positive

826
[354.9957, 468.4489]

positive

Problem rate of change <= 1.1399
1373

[748.867, 626.8805]
negative

Problem rate of change <= 0.9561
1953

[995.4203, 958.4133]
negative

785
[449.1156, 338.3786]

negative

588
[299.7514, 288.5019]

negative

920
[435.8161, 483.1185]

positive

Problem rate of change <= 1.445
1033

[559.6042, 475.2947]
negative

512
[288.498, 224.9337]

negative

521
[271.1062, 250.361]

negative

Figure D.18: SM, Kalman filter, eventual fitness, compared to EGS

Population size <= 45.0
5046

[2523.0, 2523.0]
negative

Tournament size <= 15.0
2223

[1166.008, 1057.5509]
negative

True

Problem rate of change <= 1.1733
2823

[1356.992, 1465.4491]
positive

False

Population size <= 15.0
1464

[738.8068, 725.263]
negative

759
[427.2012, 332.2879]

negative

706
[377.9474, 328.3084]

negative

758
[360.8594, 396.9547]

positive

Fitness evaluations <= 3750.0
1671

[837.3143, 833.7043]
negative

Problem rate of change <= 1.6244
1152

[519.6777, 631.7449]
positive

533
[240.2378, 292.4929]

positive

Problem rate of change <= 0.638
1138

[597.0765, 541.2114]
negative

633
[313.6159, 319.3545]

positive

505
[283.4606, 221.8569]

negative

643
[265.3673, 377.0572]

positive

509
[254.3104, 254.6877]

positive

Figure D.19: SM, Kalman filter, eventual evolvability, compared to selection

for fitness

261

Fitness evaluations <= 7250.0
5014

[2507.0, 2507.0]
negative

Fitness evaluations <= 2750.0
3442

[1766.2003, 1679.6325]
negative

True

Tournament size <= 19.0
1572

[740.7997, 827.3675]
positive

False

Number of populations <= 3.5
1060

[495.9591, 561.1543]
positive

Problem rate of change <= 1.2846
2382

[1270.2412, 1118.4782]
negative

533
[269.9524, 263.3403]

negative

527
[226.0067, 297.814]

positive

Problem rate of change <= 0.7457
1539

[851.7104, 694.2609]
negative

843
[418.5309, 424.2173]

positive

903
[469.8009, 434.751]

negative

636
[381.9094, 259.5099]

negative

733
[309.7129, 418.4717]

positive

839
[431.0868, 408.8957]

negative

Figure D.20: SM, Kalman filter, eventual evolvability, compared to EGS

Termination heuristic on <= 0.5
4972

[2486.0, 2486.0]
negative

Evolvability type <= 0.5
1610

[987.8442, 431.819]
negative

True

Fitness evaluations <= 4250.0
3362

[1498.1558, 2054.181]
positive

False

797
[393.3497, 409.0116]

positive

813
[594.4945, 22.8073]

negative

Termination heuristic type <= 0.5
1265

[625.7836, 646.208]
positive

Population size <= 69.0
2097

[872.3722, 1407.9731]
positive

659
[356.1007, 275.2086]

negative

606
[269.6829, 370.9994]

positive

Evolvability type <= 0.5
1442

[568.4201, 1032.4122]
positive

655
[303.9521, 375.5609]

positive

720
[262.2331, 559.5401]

positive

722
[306.187, 472.8722]

positive

Figure D.21: SM, particle filter, eventual fitness, compared to selection for

fitness

262

Termination heuristic on <= 0.5
4973

[2486.5, 2486.5]
negative

Evolvability type <= 0.5
1599

[573.722, 983.3513]
positive

True

Certainty threshold <= 0.6613
3374

[1912.778, 1503.1487]
negative

False

794
[98.0341, 640.4484]

positive

805
[475.6879, 342.903]

negative

513
[267.3656, 247.6521]

negative

Population size <= 79.0
2861

[1645.4124, 1255.4965]
negative

Tournament size <= 25.0
2262

[1278.8987, 1010.5659]
negative

599
[366.5137, 244.9307]

negative

Problem rate of change <= 0.7783
1492

[866.7101, 647.7056]
negative

770
[412.1886, 362.8603]

negative

584
[354.2594, 241.3021]

negative

908
[512.4507, 406.4035]

negative

Figure D.22: SM, particle filter, eventual fitness, compared to EGS

263

Termination heuristic on <= 0.5
4998

[2499.0, 2499.0]
positive

Evolvability type <= 0.5
1688

[749.0885, 935.4073]
positive

True

Evolvability type <= 0.5
3310

[1749.9115, 1563.5927]
negative

False

847
[338.3638, 505.4929]

positive

841
[410.7247, 429.9144]

positive

Fitness evaluations <= 4250.0
1699

[925.4046, 776.3979]
negative

Population size <= 65.0
1611

[824.5069, 787.1948]
negative

634
[361.8046, 273.8496]

negative

Certainty threshold <= 0.8045
1065

[563.5999, 502.5483]
negative

543
[297.5971, 246.3665]

negative

522
[266.0029, 256.1819]

negative

Certainty threshold <= 0.8024
1029

[545.2549, 484.8806]
negative

582
[279.252, 302.3142]

positive

529
[291.4821, 238.5141]

negative

500
[253.7728, 246.3665]

negative

Figure D.23: SM, particle filter, eventual evolvability, compared to selection

for fitness

Evolvability type <= 0.5
4957

[2478.5, 2478.5]
negative

Termination heuristic on <= 0.5
2454

[1173.6516, 1278.5913]
positive

True

Certainty threshold <= 0.7536
2503

[1304.8484, 1199.9087]
negative

False

814
[337.6537, 474.0623]

positive

Certainty threshold <= 0.7308
1640

[835.9979, 804.529]
negative

524
[248.1551, 275.3889]

positive

Termination heuristic type <= 0.5
1116

[587.8428, 529.1401]
negative

540
[299.0066, 241.9488]

negative

576
[288.8363, 287.1913]

negative

941
[521.7359, 420.9516]

negative

Termination heuristic on <= 0.5
1562

[783.1124, 778.9571]
negative

518
[281.7171, 237.0312]

negative

Certainty threshold <= 0.8753
1044

[501.3954, 541.926]
positive

536
[267.4787, 268.5042]

positive

508
[233.9167, 273.4218]

positive

Figure D.24: SM, particle filter, eventual evolvability, compared to EGS

264

Termination heuristic on <= 0.5
5046

[2523.0, 2523.0]
negative

Fitness evaluations <= 6750.0
1720

[944.4203, 740.209]
negative

True

Population size <= 29.0
3326

[1578.5797, 1782.791]
positive

False

Problem rate of change <= 0.9997
1040

[536.9899, 495.8917]
negative

680
[407.4304, 244.3174]

negative

519
[257.4142, 262.4597]

positive

521
[279.5757, 233.4319]

negative

944
[483.2909, 455.9784]

negative

Certainty threshold <= 0.8426
2382

[1095.2889, 1326.8126]
positive

Fitness evaluations <= 4750.0
1451

[692.1203, 772.8653]
positive

931
[403.1686, 553.9473]

positive

614
[276.1662, 350.7526]

positive

837
[415.9541, 422.1127]

positive

Figure D.25: MVPR, Kalman filter, eventual fitness, compared to selection

for fitness

Fitness evaluations <= 6750.0
4979

[2489.5, 2489.5]
negative

Fitness evaluations <= 2250.0
3139

[1526.7598, 1612.086]
positive

True

Tournament size <= 31.0
1840

[962.7402, 877.414]
negative

False

744
[381.6899, 362.345]

negative

Population size <= 57.0
2395

[1145.0698, 1249.741]
positive

Fitness evaluations <= 4750.0
1296

[604.092, 691.7496]
positive

Number of populations <= 3.5
1099

[540.9779, 557.9914]
positive

699
[311.5632, 387.2999]

positive

597
[292.5288, 304.4497]

positive

563
[264.4781, 298.4605]

positive

536
[276.4998, 259.5309]

negative

Tournament size <= 13.0
1224

[656.1861, 567.9733]
negative

616
[306.5541, 309.4407]

positive

703
[359.6501, 343.3793]

negative

521
[296.536, 224.594]

negative

Figure D.26: MVPR, Kalman filter, eventual fitness, compared to EGS

265

Problem rate of change <= 0.2488
5168

[2584.0, 2584.0]
negative

676
[372.9697, 305.0286]

negative

True

Population size <= 47.0
4492

[2211.0303, 2278.9714]
positive

False

Certainty threshold <= 0.8072
2079

[1067.3939, 1013.2]
negative

Tournament size <= 55.0
2413

[1143.6364, 1265.7714]
positive

Problem rate of change <= 1.1176
1060

[515.1515, 544.0]
positive

1019
[552.2424, 469.2]

negative

519
[243.1515, 274.9143]

positive

541
[272.0, 269.0857]

negative

Termination heuristic type <= 0.5
1798

[822.1818, 971.4286]
positive

615
[321.4545, 294.3429]

negative

Problem rate of change <= 1.2155
1192

[516.1818, 671.2571]
positive

606
[306.0, 300.1714]

negative

658
[269.9394, 384.6857]

positive

534
[246.2424, 286.5714]

positive

Figure D.27: MVPR, Kalman filter, eventual evolvability, compared to se-

lection for fitness

266

Problem rate of change <= 1.6332
5016

[2508.0, 2508.0]
positive

Problem rate of change <= 1.361
4108

[2095.8921, 2012.9349]
negative

True

908
[412.1079, 495.0651]

positive

False

Problem rate of change <= 0.4643
3442

[1721.1567, 1720.8464]
negative

666
[374.7354, 292.0884]

negative

Certainty threshold <= 0.7953
1151

[612.1015, 539.621]
negative

Number of populations <= 4.5
2291

[1109.0552, 1181.2254]
positive

558
[309.081, 249.5128]

negative

593
[303.0205, 290.1082]

negative

Problem rate of change <= 0.8019
1710

[808.0548, 901.0186]
positive

581
[301.0004, 280.2069]

negative

678
[334.3327, 343.5752]

positive

Problem rate of change <= 1.092
1032

[473.7221, 557.4433]
positive

530
[232.3157, 297.0391]

positive

502
[241.4064, 260.4043]

positive

Figure D.28: MVPR, Kalman filter, eventual evolvability, compared to EGS

267

Fitness evaluations <= 4750.0
4992

[2496.0, 2496.0]
positive

Evolvability type <= 0.5
2114

[973.1913, 1174.2355]
positive

True

Termination heuristic on <= 0.5
2878

[1522.8087, 1321.7645]
negative

False

Tournament size <= 21.0
1048

[456.1566, 618.9025]
positive

Certainty threshold <= 0.7955
1066

[517.0347, 555.333]
positive

530
[220.3614, 327.4426]

positive

518
[235.7953, 291.4599]

positive

520
[267.5204, 249.4801]

negative

546
[249.5143, 305.853]

positive

922
[529.8963, 364.6247]

negative

Population size <= 63.0
1956

[992.9124, 957.1398]
negative

Evolvability type <= 0.5
1236

[602.7784, 639.2926]
positive

720
[390.134, 317.8472]

negative

628
[291.5287, 345.4339]

positive

608
[311.2497, 293.8587]

negative

Figure D.29: MVPR, particle filter, eventual fitness, compared to selection

for fitness

Population size <= 77.0
4985

[2492.5, 2492.5]
negative

Certainty threshold <= 0.8675
3798

[1951.5002, 1849.1484]
negative

True

Fitness evaluations <= 5250.0
1187

[540.9998, 643.3516]
positive

False

Termination heuristic on <= 0.5
2564

[1364.305, 1203.8473]
negative

Certainty threshold <= 0.9423
1234

[587.1952, 645.3011]
positive

817
[403.4401, 413.3047]

positive

Tournament size <= 23.0
1747

[960.8649, 790.5426]
negative

Crossover rate <= 0.35
1123

[638.5235, 488.3623]
negative

624
[322.3414, 302.1803]

negative

572
[314.1289, 259.2902]

negative

551
[324.3946, 229.0722]

negative

686
[304.8898, 379.1875]

positive

548
[282.3054, 266.1136]

negative

557
[236.11, 318.7515]

positive

630
[304.8898, 324.6001]

positive

Figure D.30: MVPR, particle filter, eventual fitness, compared to EGS

268

Evolvability type <= 0.5
5069

[2534.5, 2534.5]
negative

Problem rate of change <= 1.5216
2590

[1335.3069, 1254.1648]
negative

True

Problem rate of change <= 0.7774
2479

[1199.1931, 1280.3352]
positive

False

Problem rate of change <= 1.1446
2004

[1007.4414, 996.4873]
negative

586
[327.8655, 257.6775]

negative

Fitness evaluations <= 6750.0
1484

[776.942, 706.6001]
negative

520
[230.4994, 289.8872]

positive

917
[494.7789, 421.7456]

negative

567
[282.1631, 284.8544]

positive

959
[491.7983, 467.0405]

negative

Problem rate of change <= 1.1876
1520

[707.3947, 813.2947]
positive

531
[225.5318, 305.9921]

positive

989
[481.863, 507.3026]

positive

Figure D.31: MVPR, particle filter, eventual evolvability, compared to selec-

tion for fitness

Fitness evaluations <= 8250.0
5001

[2500.5, 2500.5]
negative

Tournament size <= 21.0
3946

[1934.6647, 2012.5976]
positive

True

Certainty threshold <= 0.8073
1055

[565.8353, 487.9024]
negative

False

Tournament size <= 5.0
2033

[967.3323, 1067.2866]
positive

Certainty threshold <= 0.8591
1913

[967.3323, 945.311]
negative

626
[319.82, 305.9555]

negative

Certainty threshold <= 0.7531
1407

[647.5124, 761.3311]
positive

547
[267.6647, 279.5274]

positive

860
[379.8477, 481.8037]

positive

Problem rate of change <= 1.0452
1249

[608.1499, 641.3884]
positive

664
[359.1824, 303.9226]

negative

669
[346.3896, 322.2189]

negative

580
[261.7603, 319.1695]

positive

538
[305.059, 231.7537]

negative

517
[260.7763, 256.1488]

negative

Figure D.32: MVPR, particle filter, eventual evolvability, compared to EGS

269

	Abstract
	Declaration
	Copyright
	Publications
	Acknowledgements
	Introduction
	Research Questions
	Contributions
	Thesis Structure

	Evolvability
	What is Evolvability?
	What Determines the Evolvability of an Individual?
	Measures of Evolvability
	Measures not related to the offspring fitness distribution
	Measures related to the offspring fitness distribution

	Evolvability in Natural and Artificial Systems
	Explanations for evolvability in natural systems
	Building evolvability into artificial systems

	Summary

	The Simple Evolvability Model
	The Model
	Assumptions
	Optimal Constant
	Limitations and Conclusion

	Appendices
	Justification for the Normalization Step
	The Expected Maximum Values of the Maximum-Sum Pair

	Episodic Group Selection for Evolvability
	The Effect of Sampling Noise on Evolvability Selection
	Episodic Group Selection
	Evolvability Measures
	Likelihoods

	Evolvability Estimation Methods
	Point-estimate estimation method
	Sequential Bayesian filtering
	Kalman filter estimation method
	Particle filter estimation method

	Termination Heuristics
	Fitness Functions
	Fitness function 1: simple evolvability model
	Fitness function 2: mask matching
	Fitness function 3: symmetry matching
	Fitness function 4: modularly-varying pattern recognition
	Crossover

	Experimental Design
	Results
	Limitations and Conclusion

	EGS With Asynchronous Reproduction
	Bandit Problems
	Pure Exploration Thompson Sampling
	Episodic Group Selection with Asynchronous Reproduction
	Kalman filter
	Particle filter

	Experimental Design
	Results
	Limitations and Conclusion

	Related Work
	Estimation of Evolvability Genetic Algorithm
	Recurrent Genetic Algorithm
	Recurrent Bayesian Genetic Programming
	Modelling Evolvability in Genetic Programming
	Evolvability Search
	Comparison to This Work

	Conclusion
	Challenges and Methods
	Findings
	Limitations and Future Work
	Concluding Remarks

	EGS Data
	EGS Decision Trees
	EGS-AR Data
	EGS-AR Decision Trees

