Studying the Evolvability of Self-Encoding Genotype-Phenotype Maps

Andrew M. Webb and Joshua Knowles

School of Computer Science, University of Manchester, UK
andrew.webb@manchester.ac.uk

Abstract

We introduce a model of reproduction in which the genotype-
phenotype (G-P) map is able to evolve. In this model, Each or-
ganism implements a G-P map, determining how the organism
is encoded in its genome. Crucially, it also determines how the
G-P map itself is encoded. We call these maps ‘self-encoding’.
We relate this model to recent artificial life research, and back
to the seminal work of John von Neumann. We simulate popu-
lations of organisms that have as their genome and G-P map
the axiom and production rules of an L-system. The pop-
ulations are given the task of optimizing a dynamic fitness
function. Our purpose is to study whether the self-encoding
property has any effect on the evolution of evolvability, and to
look for other factors that lead to the evolution of G-P maps
that confer evolvability. We find that evolvability does evolve,
but only when we add constraints to the model.

Introduction

Our principal reason for studying the genotype-phenotype
(G-P) map is its role in determining evolvability. We use
Hansen’s definition (Hansen, 2006):

“Evolvability is the ability of the genetic system to pro-
duce and maintain potentially adaptive genetic variants.”

Higher evolvability means a greater probability of intro-
ducing adaptive variants. It is a variational property, related
to the way that variations are introduced into the phenome.

Mutations in the genome are more or less random'. The
genome is an encoded form of the phenome, with the G-
P map implementing the decoding function. It can poten-
tially translate the random mutations in genome into di-
rected changes in the phenome (Wagner and Altenberg, 1996;
Hansen, 2006). For example, the G-P map might perform
error correction when determining one attribute of the phe-
nome, making it less variable than other attributes. Or it
might use a single gene to determine two attributes, ensuring

!There are conflicting definitions of ‘genotype’. Here we use
genome’ to refer to the total genetic information of an organism,
and ‘phenome’ to refer to the set of all traits of an organism. We
use the established term ‘genotype-phenotype map’ to refer to the
mapping between them.

3

that the two can only vary together. We will say that the G-P
map mediates variation in the phenome, in the sense that it
acts as a mediator between the random source of variation
and variation that actually occurs.

A G-P map increases evolvability if it translates ran-
dom mutations into suitably directed (i.e., sometimes adap-
tive) changes. Life on Earth is believed to have evolved
towards higher evolvability through changes to the G-P
map (Dawkins, 2003; Pigliucci, 2008).

When and how does evolvability evolve? In what kinds of
environment does it happen? How can beneficial G-P maps
be selected for when they only confer a future advantage
and when selection can only act on current fitness? Recent
work in artificial life has aimed to answer such questions by
studying model organisms in which the G-P map can evolve.
We introduce our own model of reproduction, in which the
G-P map is ‘self-encoding’; it determines how the G-P map
itself is encoded in the genome.

The purpose of our research is to learn what factors lead
to the evolution of G-P maps that confer greater evolvability.
Our contributions are as follows.

e We describe and compare recent artificial life research in
which model organisms within the Avida platform, or an
extension of it, are studied with the purpose of understand-
ing the evolution of the G-P map.

e We suggest potential problems with these models, and
with using Avida to study the evolution of the G-P map in
general.

e We introduce a model of self-reproduction in which organ-
isms implement a ‘self-encoding’ G-P map.

e We simulate populations of these organisms, using L-
system production rules as their G-P map, that evolve
to optimize a dynamic fitness function. We find that evolv-
ability fails to evolve unless we add constraints to the
model.

Context and Related Work

In this section, we describe two models of self-reproduction
used in recent artificial life research to study the evolution



of the G-P map. Since both models are based on the Avida
platform, we also describe the default reproduction mecha-
nism in Avida. For comparison, we describe the reproduction
mechanism of John von Neumann’s universal constructor.

Von Neumann’s Universal Constructor

John von Neumann developed a two-dimensional, 29-state
cellular automaton, and a structure within it that he called the
universal constructor (Von Neumann and Burks, 1966). The
universal constructor has, roughly, the following components.

e A one-dimensional ‘tape’ G, which in inactive; on its own,
it doesn’t do anything.

e An active ‘machine’ P, which consists of the following
four components.

— A ‘decoder’ A, which implements a decoding function.
It reads the contents of the tape G, decodes the contents
into the specification of a two-dimensional structure,
and then builds that structure elsewhere in the cellular
automaton.

— The ‘tape copier’ B, which builds a copy of the tape G
adjacent to the structure built by the decoder.

— The ‘coordinator’ C, which coordinates the actions of
the decoder and tape copier.

— The ‘ancillary machine’ D, which can perform any arbi-
trary action as long as it doesn’t interfere with the other
components.

If the tape G contains an encoded description of P, relative
to the decoding function implemented by A, then the pair
constitute a self-reproducing machine; the part B constructs
a copy of G, and the part A decodes G to construct P. In
order to be a self-reproducer, the machine has to do two
things. First, it has to implement a mechanism for copying
the tape. Second, it has to implement a decoding mechanism
that decodes the tape into a description of the tape-copying
and decoding mechanisms.

This is a convincing model of biological reproduction that
includes a G-P map. The analogy to life is as follows. G
is the genome of the organism. P is the phenome. A is the
G-P map, encompassing the genetic code and development
processes. B is the mechanism for copying the genome.
D is any behaviour of the organism not directly related to
reproduction.

Mutations in G will manifest as a change in P in the off-
spring. Von Neumann noted that if the mutation affects
only the ancillary machine, then the offspring will still be
a self-reproducer. He believed that any mutation affecting
the decoder would render the offspring infertile, as the de-
coding function it implements would no longer complement
the encoding of G. A change to the decoder that leaves the
offspring fertile corresponds to a change in the G-P map.

When G is mutated, how this manifests as a change in
P of the offspring is mediated by the part A implemented

by the parent. This includes changes fo part A; it mediates
all variations in the offspring. Barry McMullin has been a
proponent of studying this model of reproduction (McMullin,
2012).

Avida

Avida is a popular software platform for studying self-
replication (Ofria and Wilke, 2004), in which each organism
is a program in an assembly-like language. Avida has a cel-
lular structure; each organism has its own private memory,
and the organisms are arranged in a grid. The population of
Avidans execute their instructions in parallel.

Avida simulations are initialized with a single, hand-
designed self-replicating program called the ancestor. The
default ancestor replicates by setting up and iterating over
a copy loop, in which the ‘copy’ instruction is repeatedly
executed to read from and write to successive memory loca-
tions. Once it has copied the entire contents of its memory,
it executes the special divide instruction. This places a new
child Avidan in a neighbouring cell, giving it the recently
copied instructions.

Avidans can perform additional tasks as well as self-
replication, and the experimenter can adjust the ‘metabolic
rate’ of an organism (the rate at which it executes instructions)
based on its performance on these additional tasks.

There are multiple types of mutation in Avida. The ‘copy’
instruction has a low probability of writing the wrong instruc-
tion, and ‘cosmic ray’ mutations can change any instruction
in memory at any time.

An Avidan’s sequence of instructions, being the hereditary
information that is transmitted between generations, is its
genome. The phenome of an Avidan is its behaviour when
run. Since the genome determines the phenome, the G-P map
is fixed.

As McMullin notes, in von Neumann’s terminology, the
G and P parts of an Avidan are the same, and consist only of
components B and D. Avidans don’t reproduce by applying
a decoding function to an encoded description of themselves;
they directly read and copy the contents of their own memory.

Implementing the ‘von Neumann architecture’ in
Avida

Hasegawa and McMullin study a self-reproducing ances-
tor program based on von Neumann’s model of reproduc-
tion (Hasegawa and McMullin, 2012). One part of the pro-
gram, identified with G, is not executed but is read as data.
The other part, identified with P, is executed, and does the
following.

1. Enter a copy loop, identified with the tape copier B. Unlike
the copy loop of the default Avidan ancestor, which copies
the entire contents of memory, it only copies part G.

2. Apply a decoding function, identified with the decoder A,
to G, and write the result to the region of memory adjacent



to the copy of G.
3. Execute the divide instruction.

During this process, mutations can happen in any part of
the memory. Like von Neumann’s constructor, Hasegawa
and McMullin’s ancestor has the property that when the part
G is mutated, the change observed in P of the offspring
is mediated by the decoding function implemented by the
parent. However, it is possible for ‘mutations’ to happen
directly in the part P. These mutations will cause changes to
P that are unmediated by the decoding function.

One of their results is that populations quickly reverted
to the self-inspection form of reproduction more commonly
seen in Avida, without a decoding step.

Evolving the ‘hardware’ in Avida

Egri-Nagy and Nehaniv implemented a variant of Avida, in
which each organism has its own set of data structures and
its own high-level programming language, with instructions
composed of Avida’s lower-level instructions (Egri-Nagy and
Nehaniv, 2003). When an organism is born, the first part of
its memory is read as a specification of that organism’s data
structures and instruction set (its ‘hardware’). The organism
then starts executing instructions as normal.

They refer to the hardware specification as the ‘G-P map’,
because it changes the result of executing the program (the
‘genome’). However, unlike in Hasegawa and McMullin’s
work, the genome doesn’t contain an encoded form of the
G-P map ; the mechanism of reproduction, like that of the
default Avida ancestor, is to enter a copy loop that copies the
entire contents of memory to the offspring, introducing copy
errors.

The part labelled the ‘G-P map’ mediates the changes in
the behaviour of the organism as a result of mutations in the
genome. However, the G-P map itself is subject to random
mutations, and the encoding of this part of the organism is
fixed; variation in the G-P map is unmediated.

General Limitations

We suggest that Avida may not be an ideal platform for
studying the evolution of G-P maps for the following reasons.

e Because it was designed to allow reproduction by self-
inspection and copying, without a decoding step, this
method of reproduction will inevitably be the most ef-
ficient in Avida. One of the results of Egri-Nagy and
McMullin’s work is that simulations initialized with their
ancestor quickly become dominated by ‘self-inspection’
reproducers.

e The assembly-like programming language used by Avida
isn’t designed for easily expressing developmental pro-
cesses.

e Two of the types of mutation in Avida can act on any loca-
tion in memory; for any Avidan that has parts equivalent
to G and P, some mutations will happen directly in P,
unmediated by the decoder.

Self-Encoding Genotype-Phenotype Maps

Here we introduce a model of reproduction in which each
organism implements a G-P map, which determines how the
organism is encoded in its genome. Moreover, it determines
how the G-P map itself is encoded in the genome. For brevity,
in the following we use ‘genotype-phenotype map’ and ‘de-
coder’ synonymously. We call the G-P maps ‘self-encoding’,
and call the organisms ‘self encoders’. The model differs
from previous work in the following ways.

1. The organisms do not implement a mechanism for copying
their genome. In von Neumann’s terminology, our organ-
isms are missing part B. The reason is that we want to
focus on part A, the decoder, and we know precisely what
the behaviour of part B should be. The genome-copying
step is built into the model.

2. We initialize the population with randomly generated or-

ganisms, rather than hand-designed self-reproducing or-
ganisms, in order to avoid accidentally initializing the
population in an evolutionary dead-end.

3. Only the genome is mutated. All variation in the phe-

nome is mediated by the decoder, including variation in
the decoder itself.

4. Rather than an assembly programming language, our

model will use decoding mechanisms that are biologically
inspired.

With the copying of the genome built into the model, and
the initial decoder population initialized randomly, the initial
state is analogous to a population of self-replicating RNA.
The random initial ‘decoders’ are like active molecules that
interact with the RNA to produce other molecules. The
initial decoders are not self-reproducing; the emergence of
self-reproducing decoders corresponds to the emergence of a
developmental step on top of an existing replication mecha-
nism.

Each organism in the model consists of a genome and a
phenome. The phenome consists of a decoder, and another
part that we will apply a fitness function to and adjust the
metabolism of the organism based on the result. We call this
part the solution. See Figure 1.

The population lives on a discrete grid, and is updated
iteratively, in parallel, by looping over the grid. Algorithm 1
shows one such iteration. Fitter organisms are rewarded by
‘stealing’ update cycles from less fit neighbours. When an
organism creates a new child, the child receives a mutated
copy of the parent’s genome. This genome becomes the start-
ing point for the ‘embryo’, which is a working copy of the



Organism

SN

Genome Phenome
Decoder Solution

Figure 1: The structure of an organism in our model. Arrows
indicate a ‘contains’ relationship.

data operated on by the parent’s decoder. Each time a parent
organism updates, it goes through one decoding step, apply-
ing its decoder to the embryo of its child. Later in the paper
we give an example of a decoder being applied iteratively.
When decoding is complete, the embryo is interpreted as the
specification of a decoder and a solution. These are given to
the child, and the solution is used to set the child’s fitness.
The child is then placed somewhere in the neighbourhood of
the parent.

Algorithm 1 One time step of the simulation.

1: for each cell in grid do
2: organism p < fitter of organism in cell and organism
randomly selected from 3 x 3 neighbourhood

3 if p has no embryonic child then

4: p.child.genome <— mutated_copy(p.genome)

5: p.child.embryo < p.child.genome

6 p-child.embryo <— p.decoder(p.child.embryo)

7 if decoding is complete then

8: (d, s) < interpret(p.child.embryo)

9: p-child.decoder + d
10: p.child.solution « s
11: p.child.fitness < fitness_function(s)
12: place child on grid in 3 x 3 neighbourhood of p

Selection is partly implicit, partly explicit; there is an
implicit selection pressure to be an efficient and robust repro-
ducer, and we explicitly apply selection pressures by reward-
ing organisms for the contents of their solutions.

The Decoding Mechanism

We use L-system production rules as the decoding mech-
anism. L-systems were first used to model plant develop-
ment (Lindenmayer, 1968), but have since become popular as
a more general model of development. An L-system consists
of an alphabet, an axiom, which is a string in that alphabet,
and a set of production rules. Each production rule specifies
how to rewrite a substring to another substring. L-systems
grow strings iteratively, starting from the axiom, by applying
as many production rules as possible in parallel.
For example, an L-system might have the axiom

A

and the production rules

A — BA,
B—A

The first few strings generated by this L-system are

A

BA

ABA
BAABA
ABABAABA

The L-systems we use are context sensitive (Prusinkiewicz
et al., 1990), so the left-hand side of each production rule
contains three symbols: the left context, the symbol to rewrite,
and the right context. For example, the production rule

A<B>C—DEF

replaces the symbol B, if it has an A on the left and a C on
the right, with the symbols DEF. We use context-sensitive
L-systems because they allow recursive application of pro-
duction rules, while also making it possible for the process of
applying rules to terminate rather than recursing indefinitely.

Each organism has a set of production rules as its decoder,
and its genome is used as the axiom of the L-system. Every
L-system has the same alphabet of 10 symbols. The axiom of
a parent is copied to its child and mutated. Starting with the
child’s axiom, the parent’s production rules iteratively grow
a string. One decoding step consists of applying as many
production rules as possible in parallel.

When there are no more rules to apply, decoding is com-
plete. The resulting string specifies both the production rules
and the solution of the child. The symbol sequence AA is a
punctuation mark separating the two parts. For example, the
organism with the production rule

A<B>A — DEFAADEF
operating on the axiom
ABA
will produce the string
ADEFAADEFA
which the AA punctuation separates into the strings

ADEF,
DEFA

with the first string specifying the production rules of the
offspring, and the second string specifying the solution.
Since all production rules have three symbols on the left-
hand-side and an arbitrary number of symbols on the right-
hand-side, the production rules are specified in the string as
follows. The first three symbols specify the left-hand-side of
arule. Now there is another kind of punctuation: each of the
sequences {BB, BC, BD, CB, CC, CD, DB, DC, DD} indicate
the end of the current rule; the right-hand-side of the rule
consists of all of the symbols up to, but not including, the
next such punctuation. The next rule is then built from the
symbols following that punctuation. For example, the string



DEFDEFBCGHIGHI

contains the punctuation sequence BC, and so specifies the
two production rules

D<E>F — DEF,
G<H>I — GHI

The use of sequences of symbols as punctuation precludes
their use as data; it is impossible to build a rule that explicitly
rewrites to any substring containing a punctuation sequence,
though it can be done indirectly.

The Fitness Function

We adjust the metabolism of the organisms based on the re-
sult of applying a fitness function to their solutions. Since
L-systems are well suited to growing self-similar patterns,
we use a fitness function that rewards strings with extensive
repetition, in the hope that decoders well suited to the prob-
lem will emerge. The fitness function counts the number of
occurrences of the symbol E in the solution, up to a maximum
of 150.

Since we are looking for the evolution of evolvability, we
use a fitness function that changes periodically in a structured
way; if the fitness function was static, then once the popula-
tion performed perfectly there would be no meaningful sense
in which it could be evolvable or not. After a while we switch
to rewarding for occurrences of the F symbol, then G, H, I,
and back to E.

Simulations and Results

We ran simulations in order to find factors leading to the
evolution of evolvability. We were also looking for the emer-
gence of stable, self-reproducing decoders: organisms whose
production rules, applied to their own axiom string, yield a
description of themselves.

Since the fitness function changes periodically, the average
fitness of a population over time will look like Figure 2a,
increasing until the change point and then dropping to almost
zero. We switch the fitness function every 100,000 fitness
function evaluations. We measure the average fitness within
each window of 100,000 evaluations, giving a single number
measuring how effective the population was at maximizing
the fitness function within that window.

Figure 2b shows an example of the window-averaged fit-
ness over time. Within a given window, the height of this
graph gives an indication of the evolvability of the population
with respect to the fitness function in that window. A positive
slope would indicate the evolution of evolvability.

We compared the performance of a population of self en-
coders, using the context-sensitive L-system decoding mech-
anism, with two other methods of optimizing the fitness func-
tion. One is a simple genetic algorithm, in which there are
no production rules; the genome string directly represents a
solution to the fitness function. We use the genetic algorithm

Fitness

Time (# fitness function evaluations)

(a) An example of average population fitness over time.

Fitness (average)

Time (# fitness function evaluations)

(b) An example of the fitness over time, averaged over each
fitness function window. Within each window of 100,000 evalu-
ations we use this single number as an indication of evolvability.

as a baseline against which we compare the performance of
the other methods.

The other method used for comparison does have a set
of production rules, but these are used to construct only a
solution, rather than a solution and the production rules of
the next generation; at each reproduction step, the genome
string is copied to the offspring and mutated, the parent’s
production rules are applied to the genome string, and the
result specifies the solution. The parent’s production rules are
then also copied to the offspring and mutated. We call this
the solution encoder, since the organisms control only how
they encode the solution, and the encoding of the decoder is
fixed. The purpose of comparing against the solution encoder
is to determine whether the self-encoding property has an
effect on the evolution of evolvability.

Each simulation ran for 3,000,000 function evalua-
tions/births. We ran each simulation forty times for each
method. In the fitness plots in the following sections, the
solid or dashed line shows the median fitness amongst these
runs over time, and the surrounding shaded region lies be-
tween the 25th and 75th percentiles.

Simulation 1

In the first simulation, we compared a population of self
encoders, solution encoders, and the genetic algorithm, each
with a population size of 20 x 20. Figures 3 and 4 show the
results.

The solution encoder performs well. The performance
profile of the self encoder population is similar to, if a little
worse than, that of the genetic algorithm. The reason is that
the population is quickly dominated by organisms with empty
sets of production rules. The following are some example



N
o
1

w
a
1

Fitness (average)
8
1

N
a
1

Genetic algorithm
---- Self encoder (v1)

Ll Ll Ll Ll
0e+00 1e+06 2e+06 3e+06
Time (# fitness function evaluations)

Figure 3: The window-averaged fitness of the self encoder

and genetic algorithm over time in simulation 1, with a popu-
lation size of 20 x 20.

80

Fitness (average)
3
1

N
o
1

Self encoder (v1)

---- Solution encoder

20 4
1 1 1 1
0e+00 1le+06 2e+06 3e+06
Time (# fitness function evaluations)

Figure 4: The window-averaged fitness of the self encoder
and solution encoder over time in simulation 1, with a popu-
lation size of 20 x 20.

genomes from the self encoder population.

AAGGGHGGDGGGJIGG
AAAGEEEEEEAEEEEEFE
GAAJGJFJJJIEJHIJIJIIITT

The organisms are evolving to have AA, the punctuation
that indicates the end of the production rule specification and
the start of the solution, right at the start of their genome
strings; they will have no production rules, nor will any of
their descendants, unless mutation disrupts the punctuation.

We suspect that this happened because the initial search
over production rule sets is detrimental, and so selection acts
against any organism with production rules. To test this, we
introduced a variation of the self encoder, in which AA only
acts as punctuation if it appears in the second half of the
output string. The result is to force the self encoders to have
non-empty production rule sets. We call the new population

the self encoder (v2), and the original the self encoder (v1).

o
o
1

*f

Fitness (average)
8
1

n
o
1

Self encoder (v1)

104 ! ---- Self encoder (v2)

T T T T
0e+00 1e+06 2e+06 3e+06
Time (# fitness function evaluations)

Figure 5: The window-averaged fitness of the self encoder
(vl) and self encoder (v2) over time in simulation 1, with a
population size of 20 x 20.

The typical organism in the self encoder (v2) population
has a single, long production rule in its decoder. We observed
no instances of single-generation self-reproducing organisms,
but we frequently found examples of two-generation repro-
ducers, in which an organism and its ‘grandchild’ have the
same production rules. Gestation times were low; typically,
organisms went through one or two decoding steps. We found
that, often, the genome explicitly contained the solution.

Figure 5 compares the performance of a population of
self encoders (v1) and self encoders (v2). The population
of self encoders (v2) doesn’t perform especially well, but
the wide inter-percentile range suggests that, sometimes, the
population evolves decoders that confer evolvability.

Simulation 2

The high variance in the evolvability of the self encoder
(v2) population in simulation 1 suggests that, sometimes,
good sets of production rules do evolve. This motivated
us to increase the population size to 20 x 100 for the next
simulation. Since direct competition is between neighbours,
the increased population size and rectangular shape has the
effect of reducing the rate at which the descendants of a
fitter organism spread in the population. This ought to allow
multiple competing decoders to co-exist in the population at
any time, allowing greater exploration over decoders before
any one of them dominates the population.

Figures 6 and 7 show the results. The self encoder (v1)
population is again dominated by organisms with empty sets
of production rules. The self encoder (v2) performs worse
than the self encoder (v1) for the first six or so fitness function
windows, then performs better. This appears to show long-
term adaptive evolution in the G-P map, the beneficial effect
of which remains when the fitness function changes.



30+

N
o
1

Fitness (average)

=
o
1

Self encoder (v1)

---- Self encoder (v2)
00— T T T
0e+00 1le+06 2e+06 3e+06
Time (# fitness function evaluations)

Figure 6: The window-averaged fitness of the self encoder
(vl) and self encoder (v2) over time in simulation 2, with a
population size of 20 x 100.

30+

N
o
1

Fitness (average)

=
o
1

Self encoder (v2)

---- Solution encoder

T T T T
0e+00 1e+06 2e+06 3e+06
Time (# fitness function evaluations)

Figure 7: The window-averaged fitness of the self encoder
(v2) and solution encoder over time in simulation 2, with a
population size of 20 x 100.

Simulation 3

In the previous two simulations, the self encoder (v2) popula-
tion became quickly dominated by organisms with decoders
consisting of one long production rule. The organisms are not
evolving to make use of the ‘end rule’ punctuation. We mea-
sured the relative frequencies of the symbols in the decoded
strings over a whole run as follows.

A B cC D E
0.16 0.04 0.04 0.04 0.14
F G H I J
0.12 0.14 0.14 0.12 0.06

Symbols E-T appear frequently because they are each, in
turn, rewarded for. Symbol A appears frequently because it
appears in the punctuation that indicates the start of the solu-
tion, without which the solution would be empty. Symbols
B, C, and D, which appear in the rule-separation punctua-

tion, appear less frequently than symbol J, which doesn’t
serve any purpose; they are actively selected against. To
see what would happen if organisms evolved to have large
sets of shorter production rules, we added a restriction: the
right-hand-side of each production rule must be less than or
equal to ten symbols long.

Figures 8 and 9 show the results of this simulation. Now
the self encoder (v2) out-performs the self encoder (v1) al-
most immediately, showing the adaptive value of searching
over decoders. But the self encoder (v1) population is still
dominated by organisms that evolve empty sets of production
rules. Without the constraint to force non-empty produc-
tion rule sets, the initial detrimental effect of searching over
decoders still prevents the search from ever beginning.

o
o
1

Fitness (average)
]
1

w
o
1

20 Self encoder (v1)

---- Self encoder (v2)

1 1 1 1
0e+00 1le+06 2e+06 3e+06
Time (# fitness function evaluations)

Figure 8: The window-averaged fitness of the self encoder
(v1) and self encoder (v2) over time in simulation 3, with a
population size of 20 x 20 and a limit on the size of each
production rule.

80+

[22]
o
1

Fitness (average)
5
1

Self encoder (v2)

204
---- Solution encoder

1 1 1 1
0e+00 le+06 2e+06 3e+06
Time (# fitness function evaluations)

Figure 9: The window-averaged fitness of the self encoder
(v2) and solution encoder over time in simulation 3, with a
population size of 20 x 20 and a limit on the size of each
production rule.



In the self encoder (v2) population, gestation times were
higher than in simulation 2, with organisms typically going
through four or five decoding steps. We found that, more
frequently than in simulation 2, the solution wasn’t contained
explicitly within the genome, but was actually grown by ap-
plying the production rules. We observed a kind of ‘fuzzy’
reproduction, in which an organism is similar, but not identi-
cal, to its parent or grandparent. For example, the following
two sets of production rules are from one organism (left) and
its grandchild (right).

B<E>G — AGGAGGAGGA
A<G>B — EGAGGAGGAG
A<G>G — AGGAGGAGGA
D<EF>H — AGGAGGAGGA
E<A>E — IFHAAGGAGG
E<G>A — GGAGGAGGGH
F<E>B — EABEAEBEAB
F<E>F — EBEABEAEFE
G<A>G — GAGGAGGGAG

G<G>A — GBEGAGGAGG
G<G>G — AGGJFE

B<E>G — AGGAGAGEGA
A<G>B — EGAGGAGGGA
A<G>G — GAGAGABEJF
D<F>H — BEFEIFHBEF
E<C>C — FDACJEGDAC
E<G>A — GGAGGGAGGG
E<G>G — AGGGAGGAGA
F<E>F — FHJDGAGEGA
G<A>G — EGAGGAGGGG
G<E>G — AGGAGGGGAG
G<G>A — GGGAGAGGAG
G<G>G — AGGAGBEGAG

Conclusions and Future Work

We have described a model of reproduction, called the self
encoder, in which the genome contains an encoded descrip-
tion of the G-P map. In this model, all variation in the off-
spring, including variation in the G-P map itself, is mediated
by the G-P map implemented by the parent. We simulated
populations of organisms whose G-P maps were context-
sensitive L-systems. Our purpose was to discover whether
the self-encoding property has any effect on the evolution
of evolvability, as well as to find other factors that lead to
the evolution of G-P maps that confer evolvability (with re-
spect to a dynamic fitness function) on the organisms that
implement them.

We also looked for the emergence of self-reproducing G-P
maps. We observed a kind of ‘fuzzy’ reproduction, in which
organisms had similar G-P maps to their grandchildren or
great-grandchildren. In future work we aim to measure the
degree of similarity between generations.

We found no conclusive evidence of a difference between
the ability of organisms with and without the self-encoding
property to evolve evolvability, nor did we rule out such a
difference. We found that in the self-encoding population
‘good’” G-P maps failed to evolve until we added constraints
to the model to push evolution towards them. However, once
we added the constraints good G-P maps evolved quickly.
This was to be expected, as evolvability confers a future
advantage, whereas selection acts based on current fitness.

First, we found that populations became dominated by
organisms whose L-systems had no production rules. Once
we added the constraint that forced them to have non-empty
sets of rules, in some cases the population went on to discover

G-P maps that increased evolvability. Second, increasing
the population size led to the evolution of good G-P maps,
since it allowed multiple G-P maps to co-exist for longer; it
allowed the exploration of and selection between G-P maps.
Third, we found that organisms tended to evolve to have a
single long production rule. We added a constraint to force
the population to evolve to have a large number of short
production rules, and found that as a result the population
discovered better G-P maps.

In future work we aim to study a wider range of constraints
and mechanisms causing selection for good G-P maps, with
an emphasis on mechanisms that are hypothesized to operate
in nature.

References

Dawkins, R. (2003). The evolution of evolvability. On Growth,
Form and Computers, pages 239-255.

Egri-Nagy, A. and Nehaniv, C. L. (2003). Evolvability of the
genotype-phenotype relation in populations of self-replicating
digital organisms in a Tierra-like system. In Advances in
Artificial Life, pages 238-247. Springer.

Hansen, T. F. (2006). The evolution of genetic architecture. Annual
Review of Ecology, Evolution, and Systematics, pages 123—
157.

Hasegawa, T. and McMullin, B. (2012). Degeneration of a von Neu-
mann self-reproducer into a self-copier within the Avida world.
In From Animals to Animats 12, pages 230-239. Springer.

Hasegawa, T. and McMullin, B. (2013). Exploring the point-
mutation space of a von Neumann self-reproducer within the
Avida world. In Advances in Artificial Life, ECAL, volume 12,
pages 316-323.

Lindenmayer, A. (1968). Mathematical models for cellular in-
teractions in development i. filaments with one-sided inputs.
Journal of theoretical biology, 18(3):280-299.

McMullin, B. (2012). Architectures for self-reproduction: Abstrac-
tions, realisations and a research program. In Artificial Life,
volume 13, pages 83-90.

Ofria, C. and Wilke, C. O. (2004). Avida: A software platform for
research in computational evolutionary biology. Artificial life,
10(2):191-229.

Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews
Genetics, 9(1):75-82.

Prusinkiewicz, P., Lindenmayer, A., and Hanan, J. (1990). The
algorithmic beauty of plants. The virtual laboratory (USA).

Ray, T. S. (1991). An approach to the synthesis of life.

Stanley, K. O. and Miikkulainen, R. (2003). A taxonomy for artifi-
cial embryogeny. Artificial Life, 9(2):93-130.

Von Neumann, J. and Burks, A. W. (1966). Theory of self-
reproducing automata. University of Illinois Press, Urbana.

Wagner, G. P. and Altenberg, L. (1996). Complex adaptations and
the evolution of evolvability. Evolution, 50(3):967-976.



