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Abstract

We consider whether selection for evolvability leads to
greater adaptive progress than selection for adaptedness
alone. Our treatment bears on longstanding discussions of
selection for evolvability in the literature, which have been
largely limited to conceptual and qualitative arguments to
date. We study a simple mathematical model of a population
of individuals whose adaptedness and evolvability (here mod-
elled as the standard deviation of mutations affecting adapt-
edness) are both under selective forces. In the special case of
a population of size two, we show that the optimal amount
of selection for evolvability depends on the ratio between the
initial evolvability and the amount that evolvability can in-
crease in the time given. Our result shows that to maximize
the amount of adaptation it never pays off to select for evolv-
ability more than to select for adaptedness itself. We have
not answered the question of to what degree evolvability is
selected for in nature, however we have made a small step
in quantitative modelling of the evolution of evolvability and
proved the existence of conditions under which selection for
evolvability has a demonstrably positive effect.

Introduction

The definition of evolvability has been hard to pin

down (Kirschner and Gerhart, 1998). One popular defini-

tion is that it is a property of an individual, or an aggre-

gate property of a lineage, that increases the expected rate of

adaptation of the lineage. For example, for Hansen (2006)

evolvability is “the ability of the genetic system to produce

and maintain potentially adaptive genetic variants.” All mea-

sures of this type of evolvability depend in some way on the

probability distribution of fitness effects of mutations (Al-

tenberg, 1995). Proposed measures include the likelihood of

a mutation being beneficial (Smith et al., 2002) and the vari-

ance of the fitness of offspring prior to selection (Gallagher,

2009).

The evolution of evolvability has become a popular re-

search topic for biologists (Dawkins, 2003; Pigliucci, 2008),

researchers of evolutionary computation (Altenberg, 1994;

Reisinger and Miikkulainen, 2006), and in the artificial life

community (McMullin, 2012; Webb and Knowles, 2014).

The questions being asked fall into two broad categories:

1. Has evolvability increased through evolution in life on

Earth? If so, by what mechanisms?

2. How can we encourage the evolution of evolvability in

evolutionary algorithms and artificial life simulations?

In this paper, we ask to what extent we should select for

evolvability in simulated evolution in order to maximize the

degree of adaptation overall. To our knowledge, this has

not been done before. We have in mind a scenario in which

adaptedness and evolvability are simultaneously under se-

lective forces, and where the two are inextricably linked

such that there is a trade-off; an individual can’t inherit its

adaptedness from one parent and its evolvability from an-

other. This would be the case, for example, if an individ-

ual’s evolvability were determined by the way in which its

traits are encoded in the genetic material that undergoes vari-

ation. If one individual is well adapted, but another, less well

adapted, individual is more evolvable due to having a more

suitable encoding, in general it is not straightforward to re-

encode the more adapted individual using the better encod-

ing.

An answer to the question of to what extent we should se-

lect for evolvability will primarily be useful in evolutionary

computation and artificial life simulations, where often the

goal is to maximize the degree of adaptation. It may be less

useful in answering questions about natural evolution, where

there is no such forward planning, though it still might pro-

vide a useful piece in a larger puzzle.

Our contributions are as follows.

• We introduce a simple model of a population in which

adaptedness and evolvability are simultaneously under se-

lective forces, and in which we control the relative impor-

tance of adaptedness and evolvability during selection.

• For the special case that the population is of size two, we

answer exactly to what extent evolvability should be se-

lected for (to the exclusion of selecting for adaptedness)

to maximize the total amount of adaptation.

• We discuss the difficulties of using the same method to

analyze a larger population.



• We list the ways in which the model might be extended in

order to better reflect realistic scenarios.

The Model

We have a population of N individuals, each with two traits

A and B. The A value of an individual represents adapt-

edness to some environment, and as such it is a value to

be maximized. The B value of an individual represents the

“evolvability with respect to trait A”; it is the key factor in

determining the rate of increase of A in the course of evo-

lution. Here, that means that the Bs determine the standard

deviations of mutations affecting the As.

In each generation, we rank the population by the value

γA + (1 − γ)B, where the As and Bs have first been nor-

malized by dividing by the standard deviations of those traits

in the population. The weighting parameter γ is under our

control, and takes values in the range [0, 1]. This parameter

represents a trade-off between selecting for adaptedness and

evolvability. The top proportion p become the parents of the

next generation; we select with replacement from the set of

parents to form the next generation.

The reason we include the normalization step is that, with-

out it, as the variance of one of the traits in the population

becomes large, evolution stops acting on the other trait, re-

gardless of the value of γ. This is illustrated in Figs. 1 and

2. These show, for a large population with normally dis-

tributed A and B traits, the expected increase in the popu-

lation mean values of A and B if we select the top half by

value A + B, where the standard deviation of the A values

is 1 and the standard deviation of the B values is param-

eterized by β. Without normalization, as Fig. 1 shows, the

expected increase of each trait is a nonlinear function of both

of the trait standard deviations. As the standard deviation of

the Bs, β, tends to infinity, the expected increase in trait A
due to selection tends to zero. With normalization, as Fig. 2

shows, the expected increase of each trait is proportional to

the standard deviation of just that trait.

After the selection step, we mutate the A and B values

as follows. We add Gaussian noise to each individual’s B
value with a constant standard deviation, β. We add Gaus-

sian noise to each individual’s A value with standard devi-

ation αB (i.e., a constant times that individual’s B value).

Since standard deviations must be positive, we prevent the

Bs from taking negative values; when a mutation makes a B

value negative, we set it to a small positive value ǫ.

Algorithm 1 shows the process of evolution in this model.

Table 1 lists the parameters and their roles.

Our question, stated in terms of the model, is as follows.

What value of the parameter γ maximizes, at some particular

future time tend, the expected mean value of A? We answer

this question exactly in the special case that the population

size N = 2 and the proportion selected as the parents of the

next generation p = 1/2.

Figure 1: Without the normalization step, when we select

for A + B, the expected increase in the mean value of each

trait (∆A and ∆B) is a nonlinear function of the standard

deviations of both traits. As the standard deviation of the

Bs, β, tends to infinity, trait A stops being selected for.

Figure 2: With the normalization step, when we select for

A+B, the expected increase in the mean value of each trait

(∆A and ∆B) is a linear function of the standard deviation

of just that trait.

Derivation of the Result

We restrict ourselves to the special case that the popula-

tion size N = 2 and the proportion kept during selection

p = 1/2. We can restate the problem so that we only have

to keep track of one A value and one B value in each gener-

ation; let A(t), B(t) be the A and B values of the parent for

generation t, with A(0) = A0, B(0) = B0.

In each generation, we duplicate the parent, mutate both

copies, and then, after normalizing by dividing the As and

Bs by their population standard deviations, we select as the

parent for the next generation the individual with the maxi-

mum value of γA+(1−γ)B. Since the parents are identical

before mutation, we are essentially selecting between muta-

tion events. The normalization step means that, as far as the

selection operator is concerned, all mutations have a stan-

dard deviation of 1.

We can achieve the same result by drawing four ‘nor-

malized’ mutations from the standard normal distribution

N (0, 1). MA1
and MA2

are the normalized mutations af-



Algorithm 1 Our model of simultaneous evolution of adapt-

edness and evolvability.

1: Initialize vector A(t = 0) with N elements of value A0

2: Initialize vector B(t = 0) with N elements of value B0

3: for each t← 0..tend do

4: A′ ← A(t)/std dev(A(t))
5: B′ ← B(t)/std dev(A(t))
6: Sort A(t), B(t) by the corresponding value γA′ +

(1− γ)B′

7: for each n← 1..N do

8: i← random variate drawn from the discrete uni-

form distribution [1, pN ]
9: MA ∼ N (0, α2B(t)[i]2)

10: MB ∼ N (0, β2)
11: A(t+ 1)n ← A(t)i +MA

12: B(t+ 1)n ← B(t)i +MB

13: if B(t+ 1)n < 0 then

14: B(t+ 1)n ← ǫ

fecting the As, and MB1
and MB2

are the normalized mu-

tations affecting the Bs. We will then select the pair of mu-

tations with the largest value of γMA + (1 − γ)MB, and

multiply each by the desired mutational standard deviation,

undoing the normalization step. We then apply these muta-

tions to the parent to get the A and B values of the parent of

the next generation.

Let 〈M+

A ,M+

B 〉 be the 〈MA,MB〉 pair with the maximum

value of γMA + (1− γ)MB . That is,

〈M+

A ,M+

B 〉 = 〈MAm
,MBm

〉, where (1)

m = argmax
i∈{1,2}

(

γMAi
+ (1 − γ)MBi

)

.

The two components in the sum in (1) are distributed as

γMA1,2
∼ N (0, γ2) (2)

(1− γ)MB1,2
∼ N (0, (1− γ)2). (3)

Using the results (21), (22) from the appendix, we obtain

the expected values of these components in the pair with the

maximum sum, which are

E[γM+

A ] =
γ2

√

γ2 + (1 − γ)2
√
π

(4)

E[(1 − γ)M+

B ] =
(1 − γ)2

√

γ2 + (1 − γ)2
√
π
. (5)

From one generation to the next, A will increase by

αB(t)M+

A , and B will increase by βM+

B . These are the ‘un-

normalized’ mutations, which have the expected values (tak-

ing the expectation over the possible values of M+

A ,M+

B )

N — The population size. Here we set N = 2.

p — The proportion of individuals chosen by trun-

cation selection as parents of the next genera-

tion. Here we set p = 1/2.

A0 — The initial value of the trait A in the popula-

tion.

B0 — The initial value of the trait B in the popula-

tion. Non-negative.

α — A parameter adjusting the standard deviation

of A mutations. Non-negative.

β — A parameter adjusting the standard deviation

of B mutations. Non-negative.

tend — The time at which we want to maximize the

expected mean value of A, with respect to the

parameter γ. Positive integer.

γ — A parameter under our control representing a

trade-off between selection for the traits A and

B. In the range [0, 1].

Table 1: Parameters of the model.

E[αB(t)M+

A ] =
γ

√

γ2 + (1− γ)2
√
π
αB(t) (6)

E[βM+

B ] =
1− γ

√

γ2 + (1− γ)2
√
π
β. (7)

The nonlinear trade-off between the rates of increase of A
and B, determined by the parameter γ, is shown in Fig. 3,

and is given by

f(γ) =
γ

√

γ2 + (1 − γ)2
. (8)

Since αB(t)M+

A and βM+

B represent the change in A and

B from generation t to t+1, we have the recurrence relations

A(t+ 1) = A(t) + αB(t)M+

A (t) (9)

B(t+ 1) = B(t) +M+

B (t), (10)

and the expected value of A(t) and B(t) (now taking the

expectation over the mutation events in every generation)

satisfy the recurrence relations

E[A(t+ 1)] = E[A(t)] + f(γ)
αE[B(t)]√

π
(11)

E[B(t+ 1)] = E[B(t)] + f(1− γ)
β√
π
. (12)

Solving the second recurrence relation gives the expected

value of B at time t, which is



Figure 3: The trade-off between selecting for traits A and

B in a population of size 2. The function f(γ) gives the

expected increase in trait A due to selection, in units of the

standard deviation of A mutations. The function f(1 − γ)
plays the same role for the expected increase in trait B.

E[B(t)] = B0 + f(1− γ)
βt√
π
, (13)

and solving the first recurrence relation gives the expected

value of A at time t, which is

E[A(t)] = A0 +
αt

4π

(

4
√
πB0γ

√

γ2 + (1− γ)2
(14)

− β(t− 1)

(

1 +
1

γ2 + (1− γ)2

))

,

To find a value of γ that maximizes the expected value of

A at time tend, we set the derivative of the above expression

with respect to γ equal to zero. The solution γ∗ in the range

[0, 1] that satisfies this equation is

γ∗ =
3

4
+

1

4

(

z −
√
z + 3

√
z − 1

)

, where (15)

z =

√

1 +
2

π

(

β(tend − 1)

B0

)2

.

The optimal value of the trade-off parameter, γ∗, depends

only on B0, β, and tend, and is an increasing function of

B0/(β(tend − 1)). Figure 4 shows γ∗ as a function of

B0/(β(tend − 1)), while Fig. 5 shows γ∗ as a function of

the reciprocal β(tend − 1)/B0. Both are shown so that both

asymptotes are clear.

That γ∗ depends on this quantity makes sense; it is the

ratio between the initial evolvability B0 and βtend, which

is related to the amount that evolvability can increase in the

course of evolution in the time given. If the initial evolvabil-

ity is large compared to the capacity to increase evolvability,

then it pays off to focus more on increasing the trait A. As

Figure 4: The optimal value of the trade-off parameter γ as

an increasing function of B0/(β(tend−1)). As B0 becomes

large, the optimal value asymptotically approaches 1.

Figure 5: The optimal value of the trade-off parameter γ as a

decreasing function of β(tend−1)/B0. As β or tend become

large, the optimal value asymptotically approaches 1/2.

we look further to the future and tend becomes large, the

initial evolvability value has less of an effect and γ∗ tends

towards 1/2. The optimal value γ∗ is never less than 1/2; it

never pays off to select more for evolvability than for adapt-

edness.

Figure 6 shows the optimal value of γ found by numerical

methods for a range of values of B0, β, and tend. For each

setting of the parameters, we plot the value of γ with the

highest mean value of A at time tend measured over one

hundred thousand trials (the low population size make the

outcome noisy). The numerical results closely agree with

the answer obtained here, verifying the result1.

Figure 7 shows, for a particular setting of the parameters,

the expected value of A over time for three strategies; setting

γ = 1 (so that only A is selected for), setting γ = 1/2
(so that we select equally for A and B), and setting γ =
γ∗ (the optimal value). It can be seen that the γ∗ strategy

dominates. Figure 8 shows the same with a different setting

of the parameter β. Note that for the γ∗ strategy, the plots

1There is a small discrepency, because our result does not ac-
count for the fact that, after a mutation, we set negative B values
to small positive values. This manifests when B0 is small enough
that B is small compared with β in the initial generations.



Figure 6: A comparison between the optimal value of γ ob-

tained by numerical methods and the exact result.

do not show A over time for a particular value of γ; for each

time t, the plot shows the expected value of A when using

the (constant) value of γ that maximizes A(t).

Larger Population Sizes

With a larger population size, the model is harder to ana-

lyze for two reasons. The first is that the trait variances in

the population depend on mutations accumulated over mul-

tiple generations; because more than one parent is selected

in each generation there will be residual variation from the

previous generation. Moreover, this residual (post-selection)

variation will not be normally distributed. The result is that

the traits A and B will no longer be normally distributed,

but will be skewed by an amount depending on the trade-

off parameter γ and the proportion kept during selection p.

The trait distributions will change over time, approaching an

equilibrium shape.

The second problem is that, because more than one parent

is selected in each generation, correlation builds up between

the A and B values in the population; individuals selected

for having high A values are likely to have inherited large B
values. The result of this correlation is that there is indirect

selection for trait B when selecting for trait A.

Figure 9 shows (with N = 100, p = 1/2), as functions

of γ, the measured mean increase in traits A and B during

selection in generation 10, in units of the mutational stan-

dard deviation of A and B, respectively. Figure 10 shows

the same in generation 50. The asymmetry is due to indirect

selection for trait B, and the mean increase of each trait due

to selection changes over time because both the trait distri-

butions and the correlation between the traits are changing

over time. Compare these with the stationary (in time) and

symmetric functions giving the expected per-generation in-

crease of traits A and B for a population of size two, shown

in Fig. 3. Without an exact expression for the expected in-

crease of traits A and B due to selection in a larger popu-

lation, we cannot deduce the optimal value of the trade-off

parameter γ.

Figure 7: The expected value of A over time for three strate-

gies for setting γ. A0 = 0, α = 1, B0 = 1, β = 0.1.

Figure 8: The expected value of A over time for three strate-

gies for setting γ. A0 = 0, α = 1, B0 = 1, β = 1.

Figure 11 shows the optimal value of γ found by numeri-

cal methods, with a population size N = 100 and p = 1/2.

The exact result from the population size N = 2 case is

shown for comparison.

Related Work

Here we review research related to selection for evolvability

from the research fields of evolutionary biology, evolution-

ary computation, and artificial life. There has been much

debate about how to define evolvability, and about whether

it is a property of individuals or populations. In our work we

have followed Conrad (1972), Altenberg (1994), Kirschner

and Gerhart (1998), and others in defining evolvability to

be a property of individuals, related to their amenability to

adaptive evolution, or capacity to produce potentially more

well-adapted offspring.

Even amongst those who agree with this definition, there

is no consensus about exactly how to measure evolvabil-

ity. Proposed measures include the likelihood of a benefi-

cial mutation, the expected fitness of offspring after selec-

tion, and the expected variance in fitness of offspring prior

to selection. Gallagher (2009) gives a summary of these and



Figure 9: The function f1(γ) shows the measured mean in-

crease in trait A in generation 10 in units of the standard de-

viation of A mutations. The function g1(γ) plays the same

role for trait B. The functions are asymmetric; there is indi-

rect selection for B when selecting for A. N = 100.

Figure 10: The function f2(γ) shows the measured mean

increase in trait A in generation 50 in units of the standard

deviation of A mutations. Function g2(γ) plays the same

role for trait B. The functions are not the same as those for

generation 10, and the functions are asymmetric. Compare

with Fig. 3. N = 100.

other measures. It is this last measure, the pre-selection vari-

ance of offspring, which is closest to ours; in our model, the

evolvability of an individual is the standard deviation of mu-

tations affecting the individual’s offspring.

In biology, questions have been asked about whether

evolvability has evolved in life on Earth, and if it has,

whether it evolved by natural selection or by some additional

mechanisms (Pigliucci, 2008). The first question is moti-

vated by the fact that evolvability confers a future, rather

than present, advantage, and it’s not obvious that evolu-

tion has or is able to select for evolvability even if do-

ing so would be beneficial in the long term (Kirschner and

Gerhart, 1998). Amongst those who believe evolvability

has evolved, proposed mechanisms include indirect selec-

tion due to correlation between fitness and evolvability (Al-

tenberg, 1994), direct selection for evolvability as an adap-

tation or as a byproduct of selection for environmental ro-

bustness (Hansen, 2006; Visser et al., 2003), higher level

Figure 11: A comparison between the optimal value of γ
obtained by numerical methods (with population size N =
100) and the exact result (with N = 2).

selection between clades and groups (Alberch, 1991), and

a process of repeated extinctions and radiations (Dawkins,

2003).

In recent experiments in artificial life, the underlying en-

codings of self-replicators (i.e., the way in which the replica-

tors are encoded in their heritable genetic information) has

been allowed to evolve. The hope is that more evolvable

encodings (with respect to the environment) will emerge.

Many of these simulations were implemented in Avida and

its variants. Avida is an artificial life platform in which

assembly-like computer programs self replicate (Ofria and

Wilke, 2004).

Baugh and McMullin (2013) and Hasegawa and Mc-

Mullin (2013) have, respectively, designed replicators for

the Tierra and Avida self-replication platforms in which part

of the self-replicating program is interpreted as genetic in-

formation, and another part is interpreted as a decoding

mechanism, that decodes the genetic information. By allow-

ing both to evolve, the way that the replicators are encoded

in the genetic portion can change over time.

Egri-Nagy and Nehaniv (2003) have implemented a vari-

ant of Avida in which each replicating program has its own,

different, instruction set, which itself can evolve. The goal

is similar; the way that a replicator’s behaviour is encoded

can change over time, and more evolvable encodings might

be discovered.

Webb and Knowles (2014) aimed to study the differ-

ing capacities to evolve evolvability between ‘non-self-

encoding’ and ‘self-encoding’ replicators. In both cases,

each replicator implement a decoder that interprets its ge-

netic information, and the decoder itself can evolve over

time. In ‘self-encoders’, the decoder determines the way

in which it itself is encoded in the genetic information. The

authors concluded that there may have been insufficient se-

lection for evolvability in their simulations to distinguish be-

tween the two types of replicator.

In the evolutionary computation field, there is a general

concern with evolvability in the sense of mechanisms that



might improve the capacity for adaptive evolution. Placing

the degree of mutational variation under evolutionary con-

trol has been studied by Eiben et al. (1999), mostly from an

empirical perspective, though important theoretical work in

this area has also been done (Rudolph, 2001).

Reisinger and Miikkulainen (2006) list some ways in

which evolvability has been allowed to evolve in evolution-

ary algorithms. For example, Ebner et al. (2002) study

the evolution of evolvability in neutral networks, in which

neighbouring genotypes can encode the same phenotype.

Neutral mutations, whose relevance to evolvability was first

outlined by Maynard Smith (1970), are those that leave the

phenotype unchanged, while possibly changing the pheno-

typic neighbourhood. Reisinger and Miikkulainen give as

other examples evolutionary algorithms with indirect encod-

ings (Stanley and Miikkulainen, 2003) and Estimation-of-

Distribution algorithms (Pelikan et al., 2002).

Altenberg (1994) shows that in genetic programming,

evolvability can evolve by the implicit selection of blocks

of code for what he calls their ‘constructional selection’, or

their ability to improve programs in the population when in-

serted into them.

Conclusion and Future Work

We have introduced a model of a population simultaneously

evolving an adaptive trait A and a trait B that is the “evolv-

ability with respect to A”, with the aim of answering to what

extent we should select for evolvability in order to maximize

the total amount of adaptation over a given time period.

We have answered this question exactly in the special case

that the population size is two, with one individual selected

as the parent of the next generation. We find that the op-

timal weighting parameter γ is never less than 1/2 and is

an increasing function of B0/(β(tend − 1)), asymptotically

approaching 1, where B0 is the initial evolvability, β is the

standard deviation of mutations affecting B, and tend is the

time at which we want to maximize A with respect to γ.

The model is straightforward to analyze with a popula-

tion size of two, because the two individuals only ever differ

in the mutations that happen within the current generation,

and the mutations are independent and normally distributed;

there are no residual differences between individuals from

earlier mutations and there is no correlation between the A
andB values within the population. As a result, the expected

increase in A due to selection is a function of γ times the

standard deviation of A mutations, and the expected increase

in B is the same function of 1 − γ times the standard devi-

ation of B mutations (see Fig. 3). For larger populations,

the trait distributions are not normal, change over time, and

become correlated, making analysis more difficult.

The applicability of our result is limited by the assump-

tions of the model, which are as follows.

• “Evolvability” is determined wholly by the B value,

and is independent of time, environmental variables, and

where each individual is on the A-landscape.

• The As and the Bs can increase without limit.

• We have perfect knowledge of the Bs. In practice, we

would likely have to rely on estimates of the evolvability

of an individual or lineage, derived from observations of

the effects of past mutations.

In future work we aim to extend the model to overcome

one or more of these limitations.

Appendix

If we have two random variablesA and B both distributed as

N (0, σ2), then the maximum of A and B has the expected

value

E[max(A,B)] =

∫ ∞

−∞

aφ(a)

∫ a

−∞

φ(b) db da (16)

+

∫ ∞

−∞

bφ(b)

∫ b

−∞

φ(a) da db

= 2

∫ ∞

−∞

aφ(a)

∫ a

−∞

φ(b) db da,

where φ(x) is the pdf of the distribution. This can be

understood as follows. We integrate over the possible val-

ues of A, multiplying the probability of getting that value

by the probability that the B value is less than it (i.e., the

probability that the A is the maximum of the pair). For each

possibility we multiply by the value of A to get the expected

value. We then do the same thing for the case where the B
value is the greater of the pair. Because A and B have the

same distributions, these integrals are equal, so we evaluate

it once and double the result. Evaluating the integral gives

the result

E[max(A,B)] =
σ√
π
. (17)

In this paper we make use of the following result giving

the expected values of the pair of numbers (out of two pairs)

that has the maximum sum. Suppose we have four normal

random variables distributed as

A1 ∼ N (0, σ2
A), B1 ∼ N (0, σ2

B) (18)

A2 ∼ N (0, σ2
A), B2 ∼ N (0, σ2

B).

Let 〈Am, Bm〉 be the 〈A,B〉 pair with the maximum sum.

That is,

m = argmax
i∈{1,2}

(Ai +Bi). (19)



The expected value of Am is given by

E[Am] = 2

∫ ∞

−∞

∫ ∞

−∞

aφA(a)φB(b)Φ(a+ b) da db, (20)

where Φ(a+ b) =

∫ a+b

−∞

φA+B(c) dc ,

and φA(x) is the pdf of each of A1,2, φB(x) is the pdf of

each of B1,2, and φA+B is the pdf of each of A1 + B1 and

A2 +B2.

In words, we integrate over the possible values of A1 and

B1, multiplying the joint probability of getting those values

by the probability that the sum of the other 〈A,B〉 pair takes

a value less than A1 +B1, and we multiply by the A1 value

to get its expected value. We then integrate over the possible

values of A2 and B2 (for the case where the sum of the sec-

ond pair is greater than the sum of the first), which gives the

same integral again. Adding the two integrals together gives

the expected value of Am.

Evaluating the above integral gives the value

E[Am] =
σ2
A

√

σ2
A + σ2

B

√
π
, (21)

and by symmetry the expected value of Bm is

E[Bm] =
σ2
B

√

σ2
A + σ2

B

√
π
. (22)
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