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ABSTRACT | Visual understanding of 3-D environments in real

time, at low power, is a huge computational challenge. Often

referred to as simultaneous localization and mapping (SLAM),

it is central to applications spanning domestic and industrial

robotics, autonomous vehicles, and virtual and augmented

reality. This paper describes the results of a major research

effort to assemble the algorithms, architectures, tools, and

systems software needed to enable delivery of SLAM, by sup-

porting applications specialists in selecting and configuring the

appropriate algorithm and the appropriate hardware, and com-
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pilation pathway, to meet their performance, accuracy, and

energy consumption goals. The major contributions we present

are: 1) tools and methodology for systematic quantitative eval-

uation of SLAM algorithms; 2) automated, machine-learning-

guided exploration of the algorithmic and implementation

design space with respect to multiple objectives; 3) end-

to-end simulation tools to enable optimization of heteroge-

neous, accelerated architectures for the specific algorithmic

requirements of the various SLAM algorithmic approaches;

and 4) tools for delivering, where appropriate, accelerated,

adaptive SLAM solutions in a managed, JIT-compiled, adaptive

runtime context.

KEYWORDS | Automatic performance tuning; hardware

simulation; scheduling; simultaneous localization and mapping

(SLAM)

I. I N T R O D U C T I O N

Programming increasingly heterogeneous systems for
emerging application domains is an urgent challenge.
One particular domain with massive potential is real-
time 3-D scene understanding, poised to effect a radi-
cal transformation in the engagement between digital
devices and the physical human world. In particular, visual
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Fig. 1. The objective of the paper is to create a pipeline that

aligns computer vision requirements with hardware capabilities. The

paper’s focus is on three layers: algorithms, compiler and runtime,

and architecture. The goal is to develop a system that allows us to

achieve power and energy efficiency, speed and runtime

improvement, and accuracy/robustness at each layer and also

holistically through design space exploration and machine learning

techniques.

simultaneous localization and mapping (SLAM), defined
as determining the position and orientation of a mov-
ing camera in an unknown environment by processing
image frames in real time, has emerged to be an enabling
technology for robotics and virtual/augmented reality
applications.

The objective of this work is to build the tools to enable
the computer vision pipeline architecture to be designed
so that SLAM requirements are aligned with hardware
capability. Since SLAM is computationally very demanding,
several subgoals are defined, developing systems with:
1) power and energy efficiency; 2) speed and runtime
improvement; and 3) improved results in terms of accu-
racy and robustness. Fig. 1 presents an overview of the
directions explored. At the first stage, we consider different
layers of the system including architecture, compiler and
runtime, and computer vision algorithms. Several distinct
contributions have been presented in these three lay-
ers, explained throughout the paper. These contributions
include novel benchmarking frameworks for SLAM algo-
rithms, various scheduling techniques for software per-
formance improvement, and “functional” and “detailed”
hardware simulation frameworks. Additionally, we present
holistic optimization techniques, such as design space
exploration (DSE), that allows us to take into account all
these layers together and optimize the system holistically
to achieve the desired performance metrics.

The major contributions we present are:
• tools and methodology for systematic quantitative

evaluation of SLAM algorithms;
• automated, machine-learning-guided exploration of

the algorithmic and implementation design space
with respect to multiple objectives;

• end-to-end simulation tools to enable optimization
of heterogeneous, accelerated architectures for the
specific algorithmic requirements of the various SLAM
algorithmic approaches;

• tools for delivering, where appropriate, accelerated,
adaptive SLAM solutions in a managed, JIT-compiled,
adaptive runtime context.

This paper is an overview of a large body of work unified
by these common objectives: to apply software synthesis
and automatic performance tuning in the context of com-
pilers and library generators; performance engineering;
program generation, languages, and hardware synthesis.
We specifically target mobile, embedded, and wearable
contexts, where trading quality-of-result against energy
consumption is of critical importance. The key significance
of the work lies, we believe, in showing the importance and
the feasibility of extending these ideas across the full stack,
incorporating algorithm selection and configuration into
the design space along with code generation and hardware
levels of the system.

A. Background

Based on the structure shown in Fig. 1, in this section,
background material for the following topics is presented
very briefly:

• computer vision;
• system software;
• computer architecture;
• model-based design space exploration.

1) Computer Vision: In computer vision and robotics
community, SLAM is a well-known problem. Using SLAM,
a sensor, such as a camera, is able to localize itself in an
unknown environment by incrementally building a map
and at the same time localizing itself within the map.
Various methods have been proposed to solve the SLAM
problem, but robustness and real-time performance is still
challenging [1]. From the mid 1990s onwards, a strong
return has been made to a model-based paradigm enabled
primarily by the adoption of probabilistic algorithms [2]
which are able to cope with the uncertainty in all real
sensor measurements [3]. A breakthrough was when it was
shown to be feasible using computer vision applied to com-
modity camera hardware. The MonoSLAM system offered
real-time 3-D tracking of the position of a hand-held or
robot-mounted camera while reconstructing a sparse point
cloud of scene landmarks [4]. Increasing computer power
has since enabled previously “offline” vision techniques to
be brought into the real-time domain; parallel tracking and
mapping (PTAM) made use of classical bundle adjustment
within a real-time loop [5]. Then live dense reconstruc-
tion methods, dense tracking and mapping (DTAM) using
a standard single camera [6] and KinectFusion using a
Microsoft Kinect depth camera [7] showed that surface
reconstruction can be a standard part of a live SLAM
pipeline, making use of GPU-accelerated techniques for
rapid dense reconstruction and tracking.

KinectFusion is an important research contribution and
has been used throughout this paper in several sections,
including in SLAMBench benchmarking (Section II-A),
in improved mapping and path planning in robotic
applications (Section II-B), in Diplomat static schedul-
ing (Section III-A2), in Tornado and MaxineVM dynamic
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scheduling (Sections III-B1 and III-B2), in MaxSim hard-
ware profiling (Section IV-B2), and various design space
exploration and crowdsourcing methods (Section V).

KinectFusion models the occupied space only and
tells nothing about the free space which is vital for
robot navigation. In this paper, we present a method
to extend KinectFusion to model free space as well
(Section II-B). Additionally, we introduce two benchmark-
ing frameworks, SLAMBench and SLAMBench2 (Section
II-A). These frameworks allow us to study various SLAM
algorithms, including KinectFusion, under different hard-
ware and software configurations. Moreover, a new sensor
technology, focal-plane sensor-processor arrays, is used
to develop scene understanding algorithms, operating at
very high frame rates with very low power consumption
(Section II-C).

2) System Software: Smart scheduling strategies can
bring significant performance improvement regarding exe-
cution time [8] or energy consumption [9]–[11] by
breaking an algorithm into smaller units, distributing
the units between cores or intellectual properties (IPs)
available, and adjusting the voltage and frequency of
the cores. Scheduling can be done either statically or
dynamically. Static scheduling requires extended knowl-
edge about the application, i.e., how an algorithm can
be broken into units, and how these units behave in
different settings. Decomposing an algorithm this way
impacts a static scheduler’s choice in allocating and map-
ping resources to computation units, and therefore it
needs to be optimized. In this paper, two static scheduling
techniques are introduced (Section III-A) including idiom-
based compilation and Diplomat, a task-graph framework
that exploits static dataflow analysis to perform CPU/GPU
mapping.

Since static schedulers do not operate online, optimiza-
tion time is not a primary concern. However, important
optimization opportunities may depend on the data being
processed; therefore, dynamic schedulers have more for
obtaining the best performance. In this paper, two novel
dynamic scheduling techniques are introduced including
MaxineVM, a research platform for managed runtime lan-
guages executing on ARMv7, and Tornado, a heteroge-
neous task-parallel programming framework designed for
heterogeneous systems where the specific configurations
of CPUs, GPGPUs, FPGAs, DSPs, etc. in a system are not
known until runtime (Section III-B).

In contrast, dynamic schedulers cannot spend too much
processing power to find good solutions, as the perfor-
mance penalty may outweigh the benefits they bring.
Quasi-static scheduling is a compromising approach that
statically computes a good schedule and further improves
it online depending on runtime conditions [12]. A hybrid
scheduling technique is introduced called power-aware
code generation, which is a compiler-based approach
to runtime power management for heterogeneous cores
(Section III-C).

3) Computer Architecture: It has been shown that moving
to a dynamic heterogeneous model, where the use of
hardware resources and the capabilities of those resources
are adjusted at runtime, allows far more flexible opti-
mization of system performance and efficiency [13], [14].
Simulation methods, such as memory and instruction
set simulation, are powerful tools to design and eval-
uate such systems. A large number of simulation tools
are available [15]; in this paper we further improve
upon current tools by introducing novel “functional” and
“detailed” hardware simulation packages, that can simu-
late individual cores and also complete CPU/GPU systems
(Section IV-A). Also novel profiling (Section IV-B) and spe-
cialization (Section IV-C) techniques are introduced which
allow us to custom-design chips for SLAM and computer
vision applications.

4) Model-Based Design Space Exploration: Machine learn-
ing has rapidly emerged as a viable means to auto-
mate sequential optimizing compiler construction. Rather
than hand-craft a set of optimization heuristics based on
compiler expert insight, learning techniques automatically
determine how to apply optimizations based on statistical
modelling and learning. Its great advantage is that it can
adapt to changing platforms as it has no a priori assump-
tions about their behavior. There are many studies showing
it outperforms human-based approaches [16]–[19].

Recent work shows that machine learning can auto-
matically port across architecture spaces with no addi-
tional learning time, and can find different, appropriate,
ways of mapping program parallelism for different parallel
platforms [20], [21]. There is now ample evidence from
previous research, that design space exploration based on
machine learning provides a powerful tool for optimizing
the configuration of complex systems both statically and
dynamically. It has been used from the perspective of
single-core processor design [22], the modelling and pre-
diction of processor performance [23], the dynamic recon-
figuration of memory systems for energy efficiency [24],
the design of SoC interconnect architectures [25], and
power management [24]. The DSE methodology will
address this paper’s goals from the perspective of future
many-core systems, extending beyond compilers and archi-
tecture to elements of the system stack including appli-
cation choices and runtime policies. In this paper, several
DSE related works are introduced. Multi-domain DSE per-
forms exploration on hardware, software, and algorithmic
choices (Section V-A1). With multidomain DSE, it is possi-
ble to compromise between metrics such as runtime speed,
power consumption, and SLAM accuracy. In motion-aware
DSE (Section V-A2), we develop a comprehensive DSE that
also takes into account the complexity of the environment
being modelled, including the photometric texture of the
environment, the geometric shape of the environment, and
the speed of the camera in the environment. DSE works
allow us to design applications that can optimally choose
a set of hardware, software, and algorithmic parameters
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Fig. 2. Outline of the paper. The contributions of the paper have

been organized under four sections, shown with solid blocks. These

blocks cover algorithmic, software, architecture, and holistic

optimization domains. Power efficiency, runtime speed, and quality

of results are the subgoals of the project. The latter includes metrics

such as accuracy of model reconstruction, accuracy of trajectory,

and robustness.

meeting certain desired performance metrics. One example
application is active SLAM (Section V-A2a).

B. Outline

Real-time 3-D scene understanding is the main driving
force behind this work. Three-dimensional scene under-
standing has various applications in wearable devices,
mobile systems, personal assistant devices, Internet of
Things, and many more. Throughout this paper, we aim to
answer the following questions: 1) How can we improve
3-D scene understanding (especially SLAM) algorithms?
2) How can we improve power performance for hetero-
geneous systems? 3) How can we reduce the develop-
ment complexity of hardware and software? As shown in
Fig. 2, we focus on four design domains: computer vision
algorithms, software, hardware, and holistic optimization
methods. Several novel improvements have been intro-
duced, organized as shown in Fig. 2.

• Section II (Algorithm) explains the algorithmic
contributions such as using novel sensors,
improving dense mapping, and novel benchmarking
methods.

• Section III (Software) introduces software techniques
for improving system performance, including various
types of scheduling.

• Section IV (Architecture) presents hardware develop-
ments, including simulation, specialization, and pro-
filing techniques.

• Section V (Holistic Optimization) introduces holistic
optimization approaches, such as design space explo-
ration and crowdsourcing.

• Section VI summarizes the work.

II. C O M P U T E R V I S I O N A L G O R I T H M S
A N D A P P L I C AT I O N S

Computer vision algorithms are the main motivation
of the paper. We focus mainly on SLAM. Within the
past few decades, researchers have developed various
SLAM algorithms, but few tools are available to compare
and benchmark these algorithms and evaluate their per-
formance on the available diverse hardware platforms.
Moreover, the general research direction is also moving
towards making the current algorithms more robust to
eventually make them available in industries and our
everyday life. Additionally, as the sensing technologies
progress, the pool of SLAM algorithms becomes more
diverse and fundamentally new approaches need to be
invented.

This section presents algorithmic contributions from
three different aspects. As shown in Fig. 3, three main
topics are covered: 1) benchmarking tools to compare
the performance of the SLAM algorithms; 2) improved
probabilistic mapping; and 3) new sensor technologies for
scene understanding.

A. Benchmarking: Evaluation of SLAM Algorithms

Real-time computer vision and SLAM offer great
potential for a new level of scene modelling, track-
ing, and real environmental interaction for many types
of robots, but their high computational requirements
mean that implementation on mass market embedded
platforms is challenging. Meanwhile, trends in low-cost,
low-power processing are towards massive parallelism
and heterogeneity, making it difficult for robotics and
vision researchers to implement their algorithms in a
performance-portable way.

To tackle the aforementioned challenges, in this section,
two computer vision benchmarking frameworks are intro-
duced: SLAMBench and SLAMBench2. Benchmarking is a
scientific method to compare the performance of differ-
ent hardware and software systems. Both benchmarking
frameworks share common functionalities, but their objec-
tives are different. While SLAMBench provides a frame-
work that is able to benchmark various implementations

Fig. 3. Algorithmic contributions include benchmarking tools,

advanced sensors, and improved probabilistic mapping.
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Fig. 4. SLAMBench enables benchmarking of the KinectFusion

algorithm on various types of platforms by providing different

implementations such as C��, OpenMP, CUDA, and OpenCL.

of KinectFusion, SLAMBench2 provides a framework that
is able to benchmark various different SLAM algorithms in
their original implementations.

Additionally, to systemically choose the proper data sets
to evaluate the SLAM algorithms, we introduce a data set
complexity scoring method. All these projects allow us to
optimize power, speed, and accuracy.

1) SLAMBench: As a first approach to investigate SLAM
algorithms, we introduced SLAMBench [26], a publicly
available software framework which represents a start-
ing point for quantitative, comparable, and validatable
experimental research to investigate tradeoffs in perfor-
mance, accuracy, and energy consumption of a dense
RGB-D SLAM system. SLAMBench provides a KinectFu-
sion [7] implementation, inspired by the open-source KFu-
sion implementation [27]. SLAMBench provides the same
KinectFusion in the C++, OpenMP, CUDA, and OpenCL
variants, and harnesses the ICL-NUIM synthetic RGB-D
data set [28] with trajectory and scene ground truth for
reliable accuracy comparison of different implementation
and algorithms. The overall vision of the SLAMBench
framework is shown in Fig. 4; refer to [26] for more
information.

Third parties have provided implementations of
SLAMBench in additional emerging languages:

• C++ SyCL for OpenCL Khronos Group standard [29];
• platform-neutral compute intermediate language for

accelerator programming PENCIL [30], the PEN-
CIL SLAMBench implementation can be found
in [31].

As demonstrated in Fig. 2, SLAMBench has enabled us
to do more research in algorithmic, software, and archi-
tecture domains, explained throughout the paper. Exam-
ples include Diplomat static scheduling (Section III-A2),
Tornado dynamic scheduling (Sections III-B1), MaxSim
hardware profiling (Section IV-B2), multidomain design
space exploration (Section V-A1), comparative design

Fig. 5. SLAMBench2 allows multiple algorithms (and

implementations) to be combined with a wide array of data sets.

A simple API and data set make it easy to interface with new

algorithms.

space exploration (Section V-A3), and crowdsourcing
(Section V-B).

2) SLAMBench2: SLAMBench has had substantial suc-
cess within both the compiler and architecture realms
of academia and industry. The SLAMBench performance
evaluation framework is tailored for the KinectFusion
algorithm and the ICL-NUIM input data set. However, in
SLAMBench 2.0, we reengineered SLAMBench to have
more modularity by integrating two major features [32].
Firstly, a SLAM API has been defined, which provides an
easy interface to integrate any new SLAM algorithms into
the framework. Secondly, there is now an I/O system
in SLAMBench2 which enables the easy integration of
new data sets and new sensors (see Fig. 5). Additionally,
SLAMBench2 features a new set of algorithms and data
sets from among the most popular in the computer vision
community, Table 1 summarizes these algorithms.

The works in [40] and [41] present benchmarking
results, comparing several SLAM algorithms on various
hardware platforms; however, SLAMBench2 provides a
framework that researchers can easily integrate and use
to explore various SLAM algorithms.

3) Data Sets: Research papers on SLAM often report
performance metrics such as pose estimation accuracy,
scene reconstruction error, or energy consumption. The
reported performance metrics may not be representative of
how well an algorithm will work in real-world applications.

Table 1 List of SLAM Algorithms Currently Integrated in SLAMBench2.

These Algorithms Provide Either Dense, Semi-Dense, or Sparse Recon-

structions [32]
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Table 2 Complexity Level Metrics Using Information Divergence [44]

Additionally, as the diversity of the data sets is growing,
it becomes a challenging issue to decide which and how
many data sets should be used to compare the results. To
address this concern, not only have we categorized data
sets according to their complexity in terms of trajectory
and environment, but also we have proposed new synthetic
data sets with highly detailed scene and realistic trajecto-
ries [42], [43].

In general, data sets do not come with a measure of
complexity level, and thus the comparisons may not reveal
all strengths or weaknesses of a new SLAM algorithm.
In [44], we proposed to use frame-by-frame Kullback-
Leibler divergence as a simple and fast metric to mea-
sure the complexity of a data set. Across all frames
in a data set, mean divergence and the variance of
divergence were used to assess the complexity. Table 2
shows some of these statistics for ICL-NUIM sequences
for intensity divergence. Based on the reported trajec-
tory error metrics of the ElasticFusion algorithm [33],
data sets lr_kt2 and lr_kt3 are more difficult than lr_kt0
and lr_kt1. Using the proposed statistical divergence,
these difficult trajectories have a higher complexity score
as well.

B. OFusion: Probabilistic Mapping

Modern dense volumetric methods based on signed
distance functions such as DTAM [6] or explicit point
clouds, such as ElasticFusion [33], are able to recover high
quality geometric information in real time. However, they
do not explicitly encode information about empty space
which essentially becomes equivalent to unmapped space.
In various robotic applications this could be a problem
as many navigation algorithms require explicit and per-
sistent knowledge about the mapped empty space. Such
information is instead well encoded in classic occupancy
grids, which, on the other hand, lack the ability to faithfully
represent the surface boundaries. Loop et al. [45] proposed
a novel probabilistic fusion framework aiming at closing
such an information gap by employing a continuous occu-
pancy map representation in which the surface boundaries
are well defined. Targeting real-time robotics applications,
we have extended such a framework to make it suitable
for the incremental tracking and mapping typical of an
exploratory SLAM system. The new formulation, denoted
as OFusion [46], allows robots to seamlessly perform
camera tracking, occupancy grid mapping and surface
reconstruction at the same time. As shown in Table 3,
OFusion not only encodes the free space, but also per-
forms at the same level or better than state-of-the-art

Table 3 Absolute Trajectory Error (ATE), in Meters, Comparison Between

KinectFusion (TSDF), Occupancy Mapping (OFusion), and InfiniTAM

Across Sequences From the ICL-NUIM and TUM RGB-D Data Sets. Cross

Signs Indicate Tracking Failure

volumetric SLAM pipelines such as KinectFusion [7] and
InfiniTAM [34] in terms of mean absolute trajectory error
(ATE). To demonstrate the effectiveness of our approach
we implemented a simple path planning application on top
of our mapping pipeline. We used Informed RTT* [47] to
generate a collision-free 3-m-long trajectory between two
obstructed start-goal endpoints, showing the feasibility
to achieve tracking, mapping and planning in a single
integrated control loop in real time.

C. Advanced Sensors

Mobile robotics and various applications of SLAM, con-
volutional neural networks (CNN), and VR/AR are con-
strained by power resources and low frame rates. These
applications can not only benefit from high frame rate,
but also could save resources if they consumed less
energy.

Monocular cameras have been used in many scene
understanding and SLAM algorithms [37]. Passive stereo
cameras (e.g., Bumblebee2, 48 FPS @ 2.5 W [48]),
structured light cameras (e.g., Kinect, 30 FPS @
2.25 W [49]) and Time-of-flight cameras (e.g., Kinect One,
30 FPS @ 15 W [49]) additionally provide metric depth
measurements; however, these cameras are limited by low
frame rate and have relatively demanding power budget
for mobile devices, problems that modern bioinspired and
analogue methods are trying to address.

Dynamic vision sensor (DVS), also known as the event
camera, is a novel bioinspired imaging technology, which
has the potential to address some of the key limita-
tions of conventional imaging systems. Instead of captur-
ing and sending a full frame, an event camera captures
and sends a set of sparse events, generated by the
change in the intensity. They are low power and are
able to detect changes very quickly. Event cameras have
been used in camera tracking [50], optical flow estima-
tion [51], and pose estimation [52]– [54]. Very high
dynamic range of DVS makes it suitable for real-world
applications.

Cellular vision chips, such as the ACE400 [55], ACE16K
[56], MIPA4K [57], and focal-plane sensor-processor
arrays (FPSPs) [58]–[60], integrate sensing and processing

Vol. 106, No. 11, November 2018 | PROCEEDINGS OF THE IEEE 2025



Saeedi et al.: Navigating the Landscape for Real-Time Localization and Mapping for Robotics and Virtual and Augmented Reality

Fig. 6. Focal-plane sensor-processor arrays (FPSPs) are parallel

processing systems, where each pixel has a processing element.

in the focal plane. FPSPs are massively parallel processing
systems on a single chip. By eliminating the need for data
transmission, not only is the effective frame rate increased,
but also the power consumption is reduced significantly.
The individual processing elements are small general pur-
pose analogue processors with a reduced instruction set
and memory. Fig. 6 shows a concept diagram of FPSP,
where each pixel not only has a light-sensitive sensor, but
also has a simple processing element. The main advantages
of FPSPs are the high effective frame rates at lower clock
frequencies, which in turn reduces power consumption
compared to conventional sensing and processing systems
[61]. However, with the limited instruction sets and local
memory [60], developing new applications for FPSPs, such
as image filtering or camera tracking, is a challenging
problem.

In the past, several interesting works have been
presented using FPSPs, including high-dynamic range
imaging [62]. New directions are being followed to explore
the performance of FPSPs in real-world robotic and virtual
reality applications. These directions include: 1) 4-DOF
camera tracking [63] and 2) automatic filter kernel code
generation as well as Viola-Jones [64] face detection [65].
The key concept behind these works with FPSP is the
fact that FPSP is able to report sum of intensity values
of all (or a selection of) pixels in just one clock cycle.
This ability allows us to develop kernel code genera-
tion and also develop/verify motion hypotheses for visual
odometry and camera tracking applications. The results
of these works demonstrate that FPSPs not only con-
sume much less power compared to conventional cameras,
but also can be operated at very high frame rates, such
as 10 000 FPS.

Fig. 7 demonstrates execution times for common con-
volution filters on various CPUs and GPUs compared with
an implementation of FPSP, known as SCAMP [60]. The
code for FPSP was automatically generated as explained
in [65]. The parallel nature of the FPSP allows it to
perform all of the tested filter kernels, shown on x-axis, in a
fraction of the time needed by the other devices, shown on
y-axis. This is a direct consequence of having a dedicated
processing element available for every pixel, building up
the filter on the whole image at the same time. As for the
other devices, we see that for dense kernels (Gauss, Box),
GPUs usually perform better than CPUs, whereas for sparse

kernels (Sobel, Laplacian, Sharpen), CPUs seem to have an
advantage. An outlier case is the 7 × 7 box filter, at which
only the most powerful graphics card manages to get a
result comparable to the CPUs. It is assumed that the CPU
implementation follows a more suitable algorithm than the
GPU implementation, even though both implementations
are based on their vendors performance libraries (Intel IPP,
nVidia NPP). Another reason could be the fact that the
GTX680 and GTX780 are based on a hardware architecture
that is less suitable for this type of filter than the TITAN X’s
architecture. While Fig. 7 shows that there is a significant
reduction in execution time, the SCAMP chip consumes only
1.23W under full load. Compared to the experimented
CPU and GPU systems, this is at least 20 times less power.
Clearly, a more specialized image processing pipeline archi-
tecture could be more energy-efficient than these fully
programmable architectures. There is scope for further
research to map the space of alternative designs, includ-
ing specialized heterogeneous multicore vision process-
ing accelerators such as the Myriad-2 vision processing
unit [66].

III. S O F T WA R E O P T I M I Z AT I O N S ,
C O M P I L E R S A N D R U N T I M E S

In this section, we investigate how software optimizations,
that are mainly implemented as a collection of compiler
and runtime techniques, can be used to deliver potential
improvements in power consumption and speed tradeoffs.
The optimizations must determine how to efficiently map
and schedule program parallelism onto multicore, het-
erogeneous processor architectures. This section presents
the novel static, dynamic, and hybrid approaches used to
specialize computer vision applications for execution on
energy efficient runtimes and hardware (Fig. 8).

Fig. 7. Time for a single filter application of several well-known

filters on CPU, GPU, and SCAMP FPSP hardware. The FPSP code was

generated by the method explained in [65], the CPU and GPU code

are based on OpenCV 3.3.0.
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Fig. 8. Static, dynamic, and hybrid scheduling are the software

optimization methods presented for power efficiency and speed

improvement.

A. Static Scheduling and Code Transformation

In this section, we focus on static techniques applied
when building an optimized executable. Static schedulers
and optimizers can only rely on performance models of
underlying architectures or code to optimize, which limit
opportunities. However, they do not require additional
code to execute, which reduces runtime overhead. We first
introduce in Section III-A1 an idiom-based heterogeneous
compilation methodology which given the source code
of a program, can automatically identify and transform
portions of code in order to be accelerated using many-
core CPUs or GPUs. Then, in Section III-A2, we propose a
different methodology used to determine which resources
should be used to execute those portions of code. This
methodology takes a specialized direction, where appli-
cations need to be expressed using a particular model in
order to be scheduled.

1) Idiom-Based Heterogeneous Compilation: A wide vari-
ety of high-performance accelerators now exist, ranging
from embedded DSPs, to GPUs, to highly specialized
devices such as tensor processing unit [67] and vision
processing unit [66]. These devices have the capacity to
deliver high performance and energy efficiency, but these
improvements come at a cost: to obtain peak performance,
the target application or kernel often needs to be rewrit-
ten or heavily modified. Although high-level abstractions
can reduce the cost and difficulty of these modifications,
these make it more difficult to obtain peak performance.
In order to extract the maximum performance from a
particular accelerator, an application must be aware of its
exact hardware parameters [number of processors, mem-
ory sizes, bus speed, network-on-chip (NoC) routers, etc.],
and this often requires low level programming and tuning.
Optimized numeric libraries and domain specific languages
(DSLs) have been proposed as a means of reconciling
programmer ease and hardware performance. However,
they still require significant legacy code modification and
increase the number of languages programmers need to
master.

Ideally, the compiler should be able to automatically
take advantage of these accelerators, by identifying oppor-
tunities for their use, and then automatically calling into
the appropriate libraries or DSLs. However, in practice,
compilers struggle to identify such opportunities due to
the complex and expensive analysis required. Additionally,
when such opportunities are found, they are frequently on
a too small scale to obtain any real benefit, with the cost
of setting up the accelerator [i.e., data movement, remote
procedure call (RPC) costs, etc.] being much greater than
the improvement in execution time or power efficiency.
Larger scale opportunities are difficult to identify due to
the complexity of analysis, which often requires interproce-
dural analyses, loop invariant detection, pointer and alias
analyses, etc., which are complex to implement in the
compiler and expensive to compute. On the other hand,
when humans attempt to use these accelerators, they often
lack the detailed knowledge of the compiler and resort
to “hunches” or ad hoc methods, leading to suboptimal
performance.

In [68], we develop a novel approach to automatically
detect and exploit opportunities to take advantage of accel-
erators and DSLs. We call these opportunities “idioms.” By
expressing these idioms as constraint problems, we can
take advantage of constraint solving techniques [in our
case a satisfiability modulo theories (SMTs) solver]. Our
technique converts the constraint problem which describes
each idiom into an LLVM compiler pass. When running
on LLVM intermediate representation (IR), these passes
identify and report instances of each idiom. This technique
is further strengthened by the use of symbolic execution
and static analysis techniques, so that formally proved
transformations can be automatically applied when idioms
are detected.

We have described idioms for sparse and dense lin-
ear algebra, and stencils and reductions, and written
transformations from these idioms to the established
cuSPARSE and clSPARSE libraries, as well as a data-
parallel, functional DSL which can be used to gener-
ate high performance platform specific OpenCL code. We
have then evaluated this technique on the NAS, Parboil,
and Rodinia sequential C/C++ benchmarks, where we
detect 55 instances of our described idioms. The NAS,
Parboil, and Rodinia benchmarks include several key and
frequently used computer vision and SLAM related tasks
such as convolution filtering, particle filtering, backpropa-
gation, k-means clustering, breadth-first search, and other
fundamental computational building blocks. In the cases
where these idioms form a significant part of the sequential
execution time, we are able to transform the program to
obtain performance improvements ranging from 1.24x to
over 20x on integrated and discrete GPUs, contributing to
the fast execution time objective.

2) Diplomat, Static Mapping of Multikernel Applications on
Heterogeneous Platforms: We propose a novel approach to
heterogeneous embedded systems programmability using
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Fig. 9. An overview of the Diplomat framework. The user provides

(1) the task implementations in various languages and (2) the

dependencies between the tasks. Then in (3) Diplomat performs

timing analysis on the target platform and in (4) abstracts the

task-graph as a static dataflow model. Finally, a dataflow model

analysis step is performed in (5), and in (6) the Diplomat compiler

performs the code generation.

a task-graph based DSL called Diplomat [69]. Diplomat is
a task-graph framework that exploits the potential of static
dataflow modelling and analysis to deliver performance
estimation and CPU/GPU mapping. An application has to
be specified once, and then the framework can automati-
cally propose good mappings. This work aims at improving
runtime as much as performance robustness.

The Diplomat front-end is embedded in the Python
programming language and it allows the framework to
gather fundamental information about the application:
the different possible implementations of the tasks, their
expected input and output data sizes, and the existing data
dependencies between each of them.

At compile-time, the framework performs static analysis.
In order to benefit from existing dataflow analysis tech-
niques, the initial task-graph needs to be turned into a
dataflow model. As the dataflow graph will not be used
to generate the code, a representation of the application
does not need to be precise. But it needs to model an
application’s behavior close enough to obtain good per-
formance estimations. Diplomat performs the following
steps. First, the initial task-graph is abstracted into a static
dataflow formalism. This includes a timing profiling step
to estimate task durations and communication delays.
Then, by using static analysis techniques [70], a through-
put evaluation and a mapping of the application are
performed.

Once a potential mapping has been selected, an
executable C++ code is automatically generated. This

generated implementation takes advantage of task-
parallelism and data-parallelism. It can use OpenMP and
OpenCL and it may apply partitioning between CPU and
GPU when it is beneficial. This overview is summarized in
Fig. 9.

We evaluate Diplomat with KinectFusion on two embed-
ded platforms, Odroid-XU3 and Arndale, with four dif-
ferent configurations for algorithmic parameters, chosen
manually. Fig. 10 shows the results for Arndale for four
different configurations, marked as ARN0...3. Using Diplo-
mat, we observed a 16% speed improvement on average
and up to a 30% improvement over the best existing hand-
coded implementation. This is an improvement on runtime
speed, one of the goals outlined earlier.

B. Dynamic Scheduling

Dynamic scheduling takes place while the optimized
program runs with actual data. Because dynamic sched-
ulers can monitor actual performance, they can com-
pensate for performance skews due to data-dependant
control-flow and computation that static schedulers can-
not accurately capture and model. Dynamic schedulers
can therefore exploit additional dynamic runtime informa-
tion to enable more optimization opportunities. However,
they also require the execution of additional profiling
and monitoring code, which can create performance
penalties.

Tornado and MaxineVM runtime scheduling are research
prototype systems that we are using to explore and inves-
tigate dynamic scheduling opportunities. Tornado is a
framework (prototyped on top of Java) using dynamic
scheduling for transparent exploitation of task-level paral-
lelism on heterogeneous systems having multicore CPUs,
and accelerators such as GPUs, DSPs and FPGAs. Max-
ineVM is a research Java Virtual Machine (JVM) that
we are initially using to investigate dynamic hetero-
geneous multicore scheduling for application and JVM
service threads in order to better meet the changing

Fig. 10. Evaluation of the best result obtained with Diplomat for

CPU and GPU configurations, and comparison with handwritten

solutions (OpenMP, OpenCL) and automatic heuristics (Partitioning,

Speed-up mapping) for KinectFusion on Arndale platform. The

associated numbers on x-axis are different KinectFusion algorithmic

parameter configuration, and the percent on top of Diplomat bars

are the speedup over the manual implementation.
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power and performance objectives of a system under
dynamically varying battery life and application service
demands.

1) Tornado: Tornado is a heterogeneous programming
framework that has been designed for programming
systems that have a higher degree of heterogeneity than
existing GPGPU accelerated systems and where system
configurations are unknown until runtime. The current
Tornado prototype [71] superseding JACC, described
in [72], can dynamically offload code to big.LITTLE
cores, and GPUs with its OpenCL backend that supports
the widest possible set of accelerators. Tornado can also
be used to generate OpenCL code that is suitable for
high-level synthesis tools in order to produce FPGA accel-
erators, although it is not practical to do this unless the
relatively long place and route times of FPGA vendor tools
can be amortized by application runtime overheads. The
main benefit of Tornado is that it allows portable dynamic
exploration of how heterogeneous scheduling decisions
for task-parallel frameworks will lead to improvements
in power-performance tradeoffs without rewriting the
application level code, and also where knowledge of the
heterogeneous configuration of a system is delayed until
runtime.

The Tornado API cleanly separates computation logic
from coordination logic that is expressed using a task-
based programming model. Currently, data parallelization
is expressed using standard Java support for annota-
tions [71]. Applications remain architecture-neutral, and
as the current implementation of Tornado is based on
the Java managed language, we are able to dynami-
cally generate code for heterogeneous execution without
recompilation of the Java source, and without manually
generating new optimized routines for any accelerators
that may become available. Applications need only to
be configured at runtime for execution on the available
hardware. Tornado currently uses an OpenCL driver for
maximum device coverage: this includes mature support
for multicore CPUs and GPGPU, and maturing support for
Xeon Phi coprocessor/accelerators. The current dynamic
compiler technology of Tornado is built upon JVMCI and
GRAAL APIs for Java 8 and above. The sequential Java and
C++ versions of KinectFusion in SLAMBench both perform
at under 3 FPS with the C++ version being 3.4x faster than
Java. This improvement of runtime speed is shown in Fig.
11. By accelerating KinectFusion through GPGPU execu-
tion using Tornado, we manage to achieve a constant rate
of over 30 FPS (33.13 FPS) across all frames (882) from
the ICL-NUIM data set with room 2 configuration [28]. To
achieve 30 FPS, all kernels have been accelerated by up to
821.20x with an average of 47.84x across the whole appli-
cation [71], [73]. Tornado is an attractive framework for
the development of portable computer vision applications
as its dynamic JIT compilation for traditional CPU cores
and OpenCL compute devices such as GPUs enables real-
time performance constraints to be met while eliminating

Fig. 11. Execution performance of KinectFusion (using FPS) over

the time using Tornado (Java/OpenCL) vs. baseline Java and C��.

the need to rewrite and optimize code for different GPU
devices.

2) MaxineVM: The main contribution of MaxineVM is
to provide a research infrastructure for managed runtime
systems that can execute on top of modern instruction set
architectures (ISAs) supplied by both Intel and ARM. This
is especially relevant because ARM is the dominant ISA
in mobile and embedded platforms. MaxineVM has been
released as open-source software [74].

Heterogeneous multicore systems comprised of CPUs
having the same ISA but different power/performance
design point characteristics create a significant challenge
for virtual machines that are typically agnostic to CPU core
heterogeneity when undertaking thread-scheduling deci-
sions. Further, heterogeneous CPU core clusters are typi-
cally attached to NUMA-like memory system designs, con-
sequently thread scheduling policies need to be adjusted to
make appropriate decisions that do not adversely affect the
performance and power consumption of managed applica-
tions.

In MaxineVM, we are using the Java managed runtime
environment to optimize thread scheduling for heteroge-
neous architectures. Consequently, we have chosen to use
and extend the Oracle Labs research project software for
MaxineVM [75] that provided a state-of-the-art research
VM for x86–64. We have developed a robust port of
MaxineVM to ARMv7 [71], [76] (an AArch64 port is also in
progress) ISA processors that can run important Java and
SLAM benchmarks, including a Java version of KinectFu-
sion. MaxineVM has been designed for maximum flexibility,
this sacrifices some performance, but it is trivially possible
to replace the public implementation of an interface or
scheme, such as for monitor or garbage collection with sim-
ple command line switches to the command that generates
a MaxineVM executable image.

C. Hybrid Scheduling

Hybrid scheduling considers dynamic techniques, taking
advantage of static and dynamic data. A schedule can be
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statically optimized for a target architecture and applica-
tion (i.e., using machine learning), and a dynamic sched-
uler can further adjust this schedule to optimize further
actual code executions. Since it can rely on a statically
optimized schedule, the dynamic scheduler can save a
significant amount of work and therefore lower its negative
impact on performance.

1) Power-Aware Code Generation: Power is an important
constraint in modern multicore processor design. We
have shown that power across heterogeneous cores varies
considerably [77]. This work develops a compiler-based
approach to runtime power management for heteroge-
neous cores. Given an externally determined power bud-
get, it generates parallel parameterized partitioned code
that attempts to give the best performance within that
power budget. It uses the compiler infrastructure devel-
oped in [78]. The hybrid scheduling has been tested on
standard benchmarks such as DSPstone, UTSDP, and Poly-
bench. These benchmarks provide an in-depth comparison
with other methods and include key building blocks of
many SLAM and computer vision tasks such as matrix
multiplication, edge detection, and image histogram. We
applied this technique to embedded parallel OpenMP
benchmarks on the TI OMAP4 platform for a range of
power budgets. On average we obtain a 1.37x speed-up
over dynamic voltage and frequency scaling (DVFS). For
low power budgets, we see a 2x speed-up improvement.
SLAM systems, and vision applications in general, are
composed of different phases. An adaptive power budget
for every phase positively impacts frame rate and power
consumption.

IV. H A R D WA R E A N D S I M U L AT I O N

The designers of heterogeneous multiprocessor system-
on-chip (MPSoC) are faced with an enormous task when
attempting to design a system that is cooptimized to
deliver power-performance efficiency under a wide range
of dynamic operating conditions concerning the available
power stored in a battery and the current application
performance demands. In this paper, a variety of sim-
ulation tools and technologies have been presented to
assist designers in their evaluations of how performance,
energy, and power consumption tradeoffs are affected
by computer vision algorithm parameters and computa-
tional characteristics of specific implementations on dif-
ferent heterogeneous processors and accelerators. Tools
have been developed that focus on the evaluation of
native and managed runtime systems, that execute on
ARM and x86–64 processor instruction set architectures in
conjunction with GPU and custom accelerator intellectual
property.

The contributions of this section have been organized
under three main topics: simulation, profiling, and special-
ization. Under each topic, several novel tools and methods
are presented. The main objective in developing these
tools and methods is to reduce development complexity

Fig. 12. Hardware development tasks are simulation, profiling,

and specialization tools, each with its own goals. With these three

tasks, it is possible to develop customized hardware for computer

vision applications.

and increase reproducibility for system analysis. Fig. 12
presents a graph where all simulation, profiling, and spe-
cialization tools are summarized.

A. Fast Simulation

Simulators have become an essential tool for hardware
design. They allow designers to prototype different systems
before committing to a silicon design, and save enormous
amounts of money and time. They allow embedded sys-
tems engineers to develop the driver and compiler stack,
before the system is available, and to be able to verify
their results. Even after releasing the hardware, software
engineers can make use of simulators to prototype their
programs in a virtual environment, without the latency of
flashing the software onto the hardware, or even without
access to the hardware.

These different use cases require very different sim-
ulation technologies. Prototyping hardware typically
requires “detailed” performance modelling simulation to
be performed, which comes with a significant slowdown
compared to real hardware. On the other hand, software
development often does not require such detailed simula-
tion, and so faster “functional” simulators can be used. This
has led to the development of multiple simulation systems
within this work, with the GenSim system being used for
“functional” simulation and APTsim being used for more
detailed simulation.

In this section, three novel system simulation works are
presented. These works are: GenSim, CPU/GPU simula-
tion, and APTsim.

1) The GenSim Architecture Description Language: Mod-
ern CPU architectures often have a large number of
extensions and versions. At the same time, simulation
technologies have improved, making simulators both faster
and more accurate. However, this has made the creation of
a simulator for a modern architecture much more complex.
Architecture description languages (ADLs) seek to solve
this problem by decoupling the details of the simulated
architecture from the tool used to simulate it.

We have developed the GenSim simulation infrastruc-
ture, which includes an ADL toolchain (see Fig. 13).

2030 PROCEEDINGS OF THE IEEE | Vol. 106, No. 11, November 2018



Saeedi et al.: Navigating the Landscape for Real-Time Localization and Mapping for Robotics and Virtual and Augmented Reality

Fig. 13. Diagram showing the general flow of the GenSim ADL

toolchain.

This ADL is designed to enable the rapid development of
fast functional simulation tools [79], and the prototyping
of architectural extensions (and potentially full instruc-
tion set architectures). This infrastructure is used in the
CPU/GPU simulation work (Section IV-A2). The GenSim
infrastructure is described in a number of publications
[80]–[82]. GenSim is available under a permissive open-
source license and is available at [83].

2) Full-System Simulation for CPU/GPU: Graphics
processing units are highly specialized processors that
were originally designed to process large graphics work-
loads effectively; however, they have been influential
in many industries, including in executing computer
vision tasks. Simulators for parallel architectures, includ-
ing GPUs, have not reached the same level of maturity as
simulators for CPUs, both due to the secrecy of leading
GPU vendors, and the problems arising from mapping
parallel onto scalar architectures, or onto different parallel
architectures.

At the moment, GPU simulators that have been pre-
sented in literature have limitations, resulting from lack
of verification, poor accuracy, poor speeds, and limited
observability due to incomplete modelling of certain hard-
ware features. As they do not accurately model the full
native software stack, they are unable to execute realistic
GPU workloads, which rely on extensive interaction with
user and system runtime libraries.

In this work, we propose a full-system methodology for
GPU simulation, where rather than simulating the GPU as
an independent unit, we simulate it as a component of a
larger system, comprising a CPU simulator with supporting
devices, operating system, and a native, unmodified driver
stack. This faithful modelling results in a simulation plat-
form indistinguishable from real hardware.

We have been focusing our efforts on simulation of
the ARM Mali GPU and have built a substantial amount
of surrounding infrastructure. We have seen promising
results in simulation of compute applications, most notably
SLAMBench.

The work directly contributed to full system simula-
tion, by implementing the ARMv7 MMU, ARMv7 and
Thumb-2 instruction sets, and a number of devices needed
to communicate with the GPU. To connect the GPU

model realistically, we have implemented an ARM CPU
GPU interface containing an ARM Device on the CPU
side [84].

The implementation of the Mali GPU simulator
comprises:

• implementation of the job manager, a hardware
resource for controlling jobs on the GPU side;

• shader core infrastructure, which allows for retrieving
important context, needed to execute shader pro-
grams efficiently;

• shader program decoder, which allows us to interpret
Mali Shader binary programs;

• shader program execution engine, which allows us to
simulate the behavior of Mali programs.

Future plans for simulation include extending the
infrastructure to support real time graphics simulation,
increasing GPU Simulation performance using dynamic
binary translation (DBT) [79], [82], [85] techniques, and
extending the Mali model to support performance mod-
elling. We have also continued to investigate new tech-
niques for full-system dynamic binary translation (such as
exploiting hardware features on the host to further accel-
erate simulation performance), as well as new methodolo-
gies for accelerating the implementation and verification
of full system instruction set simulators. Fast full system
simulation presents a large number of unique challenges
and difficulties and in addressing and overcoming these
difficulties, we expect to be able to produce a significant
body of novel research. Taken as a whole, these tools
will directly allow us to explore next-generation many-core
applications, and design hardware that is characterized by
high performance and low power.

3) APTSim–Simulation and Prototyping Platform: APTSim
(Fig. 14) is intended as a fast simulator allowing rapid
simulation of microprocessor architectures and microar-
chitectures as well as the prototyping of accelerators.
The system runs on a platform consisting of a processor,
for functional simulation, and an FPGA for implement-
ing architecture timing models and prototypes. Currently
the Xilinx Zynq family is used as the host platform.
APTSim performs dynamic binary instrumentation using
MAMBO; see Section IV-B1, to dynamically instrument a
running executable along with the MAST codesign library,
described as follows. Custom MAMBO plugins allow spe-
cific instructions, such as load/store or PC changing events
to be sent to MAST hardware models, such as memory
systems or processor pipeline. From a simulation perspec-
tive the hardware models are for timing and gathering
statistics and do not perform functional simulation, which
is carried out on the host processor as native execution;
so, for example, if we send a request to a cache system
the model will tell us at which memory level the result is
present in as well as a response time, while the actual data
will be returned from the processor’s own memory. This
separation allows for smaller, less complicated, hardware
models to gather statistics while the processor executes the
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Fig. 14. APTSim an FPGA accelerated simulation and prototyping

platform, currently implemented on Zynq SoC.

benchmark natively and the MAMBO plugins capture the
necessary events with low overhead.

The MAST library provides a framework for easily inte-
grating many hardware IP blocks, implemented on FPGA,
with a linux-based application running on a host processor.
MAST consists of two principal parts: a software com-
ponent and a hardware library. The software component
allows the discovery and management of hardware IP
blocks and the management of memory used by the hard-
ware blocks; critically this allows new hardware blocks
to be configured and used at runtime using only user
space software. The hardware library, written in Bluespec,
contains parameterized IP blocks including architecture
models such as cache systems or pipeline models and
accelerator modules for computer vision, such as filters
or feature detectors. The hardware models can either be
masters or slaves, from a memory perspective. As masters,
models can directly access processor memory leaving the
processor to execute code while the hardware is analyzing
the execution of the last code block.

APTSim also allows us to evaluate prototype hardware,
for example we evaluated multiple branch predictors by
implementing them in Bluespec and using a MAST com-
pliant interface. This allows us to execute our bench-
mark code once on the CPU and offload to multiple
candidate implementations to rapidly explore the design
space.

In [86], we show that on the Xilinx Zynq 7000 FPGA
board coupled with a relatively slow 666 MHz ARM9

processor, the slowdown of APTsim is 400x in comparison
to native execution on the same processor. While a
relatively important slowdown over native execution is
unavoidable to implement a fine performance monitoring,
slowdown on APTsim is about half of GEM5 running at
3.2 GHz on an Intel Xeon E3 to simulate the same ARM
system. Note that, contrary to APTsim, GEM5 on Xeon does
not take profit of any FPGA acceleration. This shows the
interest of APTsim to take profit of FPGA acceleration to
implement a fast register transfer level (RTL) simulation
and monitor its performance, while hiding the complexity
of FPGA programming from the user.

B. Profiling

Profiling is the process of analyzing the runtime behav-
ior of a program in order to perform some measurements
about the performance of the program, for example, to
determine which parts of the program take the most time
to execute. This information can then be used to improve
software (for example, by using a more optimized imple-
mentation of frequently executed functions) or to improve
hardware (by including hardware structures or instruc-
tions which provide better performance for frequently
executed functions). Profiling of native applications is
typically performed via dynamic binary instrumentation.
However, when a managed runtime environment is used,
the runtime environment can often perform the necessary
instrumentation. In this section, we explore both of these
possibilities, with MAMBO being used for native profiling,
and MaxSim being used for the profiling of Java applica-
tions.

1) MAMBO: Instruction Level Profiling: Dynamic Binary
Instrumentation (DBI) is a technique for instrumenting
applications transparently while they are executed, work-
ing at the level of machine code. As the ARM architecture
expands beyond its traditional embedded domain, there is
a growing interest in DBI systems for the general-purpose
multicore processors that are part of the ARM family. DBI
systems introduce a performance overhead and reducing
it is an active area of research; however, most efforts have
focused on the x86 architecture.

MAMBO is a low overhead DBI framework for 32-bit
(AArch32) and 64-bit ARM (AArch64) [87]. MAMBO is
open-source [88]. MAMBO provides an event-driven plu-
gin API for the implementation of instrumentation tools
with minimal complexity. The API allows the enumera-
tion, analysis and instrumentation of the application code
ahead of execution, as well as tracking and control of
events such as system calls. Furthermore, the MAMBO API
provides a number of high level facilities for developing
portable instrumentation, i.e., plugins which can execute
efficiently both on AArch32 and AArch64, while being
implemented using mostly high level architecture-agnostic
code.

MAMBO incorporates a number of novel optimizations,
specifically designed for the ARM architecture, which allow
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Fig. 15. MaxSim overview of Zsim and MaxineVM based profiling.

it to minimize its performance overhead. The geomet-
ric mean runtime overhead of MAMBO running SPEC
CPU2006 with no instrumentation is as low as 12% (on
an APM X-C1 system), compared DynamoRIO [89], a state
of the art DBI system, which has an overhead of 34% under
the same test conditions.

2) MaxSim: Profiling and Prototyping Hardware–Software
Codesign for Managed Runtime Systems: Managed applica-
tions, written in programming languages such as Java,
C# and others, represent a significant share of workloads
in the mobile, desktop, and server domains. Microarchi-
tectural timing simulation of such workloads is useful
for characterization and performance analysis, of both
hardware and software, as well as for research and
development of novel hardware extensions. MaxSim [90]
(see Fig. 15) is a simulation platform based on the Max-
ineVM [75] (explained in Section III-B2), the ZSim [91]
simulator, and the McPAT [92] modelling framework.
MaxSim can perform fast and accurate simulation of
managed runtime workloads running on top of Maxine
VM [74]. MaxSim’s capabilities include: 1) low-intrusive
microarchitectural profiling via pointer tagging on x86–64
platforms; 2) modeling of hardware extensions related,
but not limited to, tagged pointers; and 3) modelling of
complex software changes via address-space morphing.

Low-intrusive microarchitectural profiling is achieved by
utilizing tagged pointers to collect type- and allocation-site
related hardware events. Furthermore, MaxSim allows,
through a novel technique called address space morphing,
the easy modelling of complex object layout transfor-
mations. Finally, through the codesigned capabilities of
MaxSim, novel hardware extensions can be implemented
and evaluated. We showcase MaxSim’s capabilities by sim-
ulating the whole set of the DaCapo-9.12-bach bench-
marks in less than a day while performing an up-to-date
microarchitectural power and performance characteriza-
tion [90]. Furthermore, we demonstrate a hardware/
software codesigned optimization that performs dynamic
load elimination for array length retrieval achieving up to

14% L1 data cache loads reduction and up to 4% dynamic
energy reduction. In [93] we present results for Max-
ineVM with MaxSim. We use SLAMBench to experiment
with KinectFusion on a 4-core Nehalem system, using 1
and 4 cores (denoted by 1C and 4C, respectively). We
use MaxSim’s extensions for the address generation unit
(AGU) (denoted by 1CA and 4CA) and load-store unit
(LSU) extension (shown by 1CAL and 4CAL). Fig. 16(a)
shows heap savings of more than 30% on SLAMBench
thanks to class information pointer (CIP) elimination.
Fig. 16 (b) demonstrates the relative reduction in execu-
tion time, using the proposed framework. In this figure,
EA refers to a machine configuration with CIP elimina-
tion with 16-b CID (class information) and EAL refers
to a variant with CIP elimination, 4 bits CID, and AGU
and LSU extensions. B stands for the standard base-
line MaxSim virtual machine and C is B with object
compression. Fig. 16(b) shows up to 6% execution time
performance benefits of CIP elimination over MaxSim
with none of our extension, whether its uses 4 cores
(4CA-EA/4CA-B) or 1 core (1CA-EA/1C-B) Finally, Fig. 16
(c) shows the relative reduction in DRAM dynamic energy
for the cases mentioned above. As the graph shows, there is
an 18% to 28% reduction in DRAM dynamic energy. These
reductions contribute to the objective of having improved
quality of the results. MaxSim is open-source [74].

C. Specialization
Recent developments in computer vision and machine

learning have challenged hardware and circuit design-
ers to design faster and more efficient systems for these
tasks [94]. TPU from Google [67], VPU from Intel Movid-
ius [66], and IPU from Graphcore [95], are such devices
with major reengineerings in hardware design, resulting
in outstanding performance. While the development of

Fig. 16. Performance of MaxSim on KinectFusion: (a) heap space

saving using tagged pointers; (b) relative reduction in execution

time; and (c) relative reduction in DRAM dynamic energy.
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custom hardware can be appealing due to the possible
significant benefits, it can lead to extremely high design,
development, and verification costs, and a very long time
to market. One method of avoiding these costs while still
obtaining many of the benefits of custom hardware is
to specialize existing hardware. We have explored sev-
eral possible paths to specialization, including specialized
memory architectures for GPGPU computations (which are
frequently used in computer vision algorithm implemen-
tations), the use of single-ISA heterogeneity (as seen in
ARM’s big.LITTLE platforms), and the potential for power
and area savings by replacing hardware structures with
software.

1) Memory Architectures for GPGPU Computation: Current
GPUs are no longer perceived as accelerators solely for
graphic workloads and now cater to a much broader
spectrum of applications. In a short time, GPUs have
proven to be of substantive significance in the world of
general-purpose computing, playing a pivotal role in sci-
entific and high performance computing (HPC). The rise
of general-purpose computing on GPUs has contributed
to the introduction of on-chip cache hierarchies in those
systems. Additionally, in SLAM algorithms, reusing previ-
ously processed data frequently occurs such as in bundle
adjustment, loop detection, and loop closure. It has been
shown that efficient memory use can improve the runtime
speed of the algorithm. For instance, the Distributed Par-
ticle (DP) filter optimizes memory requirements using an
efficient data structure for maintaining the map [96].

We have carried out a workload characterization
of GPU architectures on general-purpose workloads, to
assess the efficiency of their memory hierarchies [97]
and proposed a novel cache optimization to resolve
some of the memory performance bottlenecks in GPGPU
systems [98].

In our workload characterization study (overview on
Fig. 17) we saw that, in general, high level-1 (L1) data
cache miss rates place high demands on the available level-
2 (L2) bandwidth that is shared by the large number of
cores in typical GPUs. In particular, Fig. 17 represents
bandwidth as the number of instructions per cycle (IPCs).
Furthermore, the high demand for L2 bandwidth leads to
extensive congestion in the L2 access path, and in turn
this leads to high memory latencies. Although GPUs are
heavily multithreaded, in memory intensive applications
the memory latency becomes exposed due to a shortage
of active compute threads, reducing the ability of the mul-
tithreaded GPU to hide memory latency (exposed latency
range on Fig. 17). Our study also quantified congestion in
the memory system, at each level of the memory hierar-
chy, and characterized the implications of high latencies
due to congestion. We identified architectural parameters
that play a pivotal role in memory system congestion,
and explored the design space of architectural options to
mitigate the bandwidth bottleneck. We showed that the
improvement in performance achieved by mitigating the

Fig. 17. Speed-up of instructions per cycle (IPC) with varying

remote L1 access latencies.

bandwidth bottleneck in the cache hierarchy can exceed
the speedup obtained by simply increasing the on-chip
DRAM bandwidth. We also showed that addressing the
bandwidth bottleneck in isolation at specific levels can
be suboptimal and can even be counterproductive. In
summary, we showed that it is imperative to resolve the
bandwidth bottleneck synergistically across all levels of the
memory hierarchy. The second part of our work in this area
aimed to reduce the pressure on the shared L2 bandwidth.
One of the key factors we have observed is that there is
significant replication of data among private L1 caches,
presenting an opportunity to reuse data among the L1s.
We have proposed a cooperative caching network (CCN),
which exploits reuse by connecting the L1 caches with a
lightweight ring network to facilitate intercore communi-
cation of shared data. When measured on a selection of
GPGPU benchmarks, this approach delivers a performance
improvement of 14.7% for applications that exhibit reuse.

2) Evaluation of Single-ISA Heterogeneity: We have inves-
tigated the design of heterogeneous processors sharing a
common ISA. The underlying motivation for single-ISA
heterogeneity is that a diverse set of cores can enable
runtime flexibility. We argue that selecting a diverse set
of heterogeneous cores to enable flexible operation at
runtime is a nontrivial problem due to diversity in program
behavior. We further show that common evaluation meth-
ods lead to false conclusions about diversity. We suggest
the Kolmogorov–Smirnov (KS) test statistical test as an
evaluation metric. The KS test is the first step towards
a heterogeneous design methodology that optimizes for
runtime flexibility [99], [100].

A major roadblock to the further development of het-
erogeneous processors is the lack of appropriate evaluation
metrics. Existing metrics can be used to evaluate individual
cores, but to evaluate a heterogeneous processor, the cores
must be considered as a collective. Without appropriate
metrics, it is impossible to establish design goals for proces-
sors, and it is difficult to accurately compare two different
heterogeneous processors. We present four new metrics
to evaluate user-oriented aspects of sets of heterogeneous
cores: localized nonuniformity, gap overhead, set over-
head, and generality. The metrics consider sets rather than
individual cores. We use examples to demonstrate each
metric and show that the metrics can be used to quantify
intuitions about heterogeneous cores [101].
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Fig. 18. Example of a baseline selection, and 2- and 8-core

selections for a specific benchmark application.

For a heterogeneous processor to be effective, it must
contain a diverse set of cores to match a range of runtime
requirements and program behaviors. Selecting a diverse
set of cores is, however, a nontrivial problem. We present
a method of core selection that chooses cores at a range of
power-performance points. For example, we see in Fig. 18
that for a normalized power budget of 1.3 (1.3 times
higher than the most power-efficient alternative), the best
possible normalized time using the baseline selection is
1.75 (1.75 times the fastest execution time), whereas an 8
core selection can lower this ratio to 1.4 without exceeding
the normalized power budget, i.e., our method brings a
20% speedup. Our algorithm is based on the observation
that it is not necessary for a core to consistently have high
performance or low power; one type of core can fulfill
different roles for different types of programs. Given a
power budget, cores selected with our method provide an
average speedup of 7% on EEMBC mobile benchmarks,
and a 23% on SPECint 2006 benchmarks over the state
of the art core selection method [102].

V. H O L I S T I C O P T I M I Z AT I O N M E T H O D S

In this section, we introduce holistic optimization methods
that combine developments from multiple domains, i.e.,
hardware, software, and algorithm, to develop efficient
end-to-end solutions. The design space exploration work
presents the idea of exploring many sets of possible para-
meters to properly exploit them at different situations. The
crowdsourcing further tests the DSE idea on a massive
number of devices. Fig. 19 summarizes their goals and
contributions.

A. Design Space Exploration

Design space exploration is the exploration of various
possible design choices before running the system [103].
In scene understanding algorithms, the possible space of
the design choices is very large and spans from high-level
algorithmic choices down to parametric choices within an
algorithm. For instance, Zhang et al. [104] explore algo-
rithmic choices for visual–inertial algorithmic parameters
on an ARM CPU, as well as a Xilinx Kintex-7 XC7K355T
FPGA. In this section, we introduce two DSE algorithms:

The first on, called multidomain DSE, explores algorith-
mic, compiler and hardware parameters. The second one,
coined motion-aware DSE, further adds the complexity of
the motion and the environment to the exploration space.
The latter work is extended to develop an active SLAM
algorithm.

1) Multidomain DSE: Until now, resource-intensive scene
understanding algorithms, such as KinectFusion, could
only run in real time on powerful desktop GPUs. In [105]
we examine how it can be mapped to power constrained
embedded systems and we introduce HyperMapper, a tool
for multi-objective DSE. HyperMapper was demonstrated
in a variety of applications ranging from computer vision
and robotics to compilers [44], [105]–[107]. Key to our
approach is the idea of incremental codesign exploration,
where optimization choices that concern the domain layer
are incrementally explored together with low-level com-
piler and architecture choices (see Fig. 21, dashed boxes).
The goal of this exploration is to reduce execution time
while minimizing power and meeting our quality of result
objective. Fig. 20 shows an example performed with
KinectFusion, in which for each point, a set of parameters,
two metrics, maximum ATE and runtime speed, is shown.
As the design space is too large to exhaustively evaluate,
we use active learning based on a random forest predictor
to find good designs. We show that our approach can, for
the first time, achieve dense 3-D mapping and tracking
in the real-time range within a 1W power budget on a
popular embedded device. This is a 4.8x execution time
improvement and a 2.8x power reduction compared to the
state-of-the-art.

2) Motion- and Structure-Aware DSE: In multidomain
DSE, when tuning software and hardware parameters, we
also need to take into account the structure of the environ-
ment and the motion of the camera. In the motion- and
structure-aware design space exploration (MS-DSE) work
[44], we determine the complexity of the structure and
motion with a few parameters calculated using informa-
tion theory. Depending on this complexity and the desired
performance metrics, suitable parameters are explored
and determined. The hypothesis of MS-DSE is that we

Fig. 19. Holistic optimization methods explore all domains of the

real-time 3-D scene understanding, including hardware, software,

and computer vision algorithms. Two holistic works presented here:

Design Space Exploration and Crowdsourcing.
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Fig. 20. This plot illustrates the result of HyperMapper on the DSE

of the KinectFusion algorithmic parameters considering accuracy

and frame rate metrics. We can see the result of random sampling

(red) as well as the improvement of solutions after active learning

(black).

can use a small set of parameters as a very useful proxy
for a full description of the setting and motion of a SLAM
application. We call these motion and structure (MS) para-
meters, and define them based on information divergence
metric. Fig. 21 demonstrates the set of all design spaces.

MS-DSE presents a comprehensive parameterization of
3-D understanding scene algorithms, and thus based on
this new parameterization, many new concepts and appli-
cations can be developed. One of these applications, active
SLAM, is outlined here. For more applications, please see
[44] and [105]–[107].

a) Active SLAM: Active SLAM is the method for choos-
ing the optimal camera trajectory, in order to maximize
the camera pose estimation, the accuracy of the recon-
struction, or the coverage of the environment. In [44],
it is shown that MS-DSE can be utilized to optimize not
only fixed system parameters, but also to guide a robotic
platform to maintain a good performance for localization
and mapping. As shown in Fig. 21, a Pareto front holds
all optimal parameters. The front has been prepared in
advance by exploring the set of all parameters. When the
system is operating, optimal parameters are chosen given
the desired performance metrics. Then these parameters
are used to initialize the system. Using MS parameters, the

Fig. 21. Motion and structure aware active SLAM design space

exploration using HyperMapper.

Fig. 22. Success versus failure rate when mapping the same

environment with different motion planning algorithms: active SLAM

and random walk.

objective is to avoid motions that cause very high statistical
divergence between two consecutive frames. This way, we
can provide a robust SLAM algorithm by allowing the
tracking work all the time. Fig. 22 compares the active
SLAM with a random walk algorithm. The experiments
were done in four different environments. In each envi-
ronment, each algorithm was run ten times. Repeated
experiments serve as a measure of the robustness of the
algorithm in dealing with uncertainties rising from minor
changes in illumination, or inaccuracies of the response
of the controller or actuator to the commands. The con-
sistency of the generated map was evaluated manually
as either a success or failure of SLAM. If duplicates of
one object were present in the map, it was considered
as failure. This experiment shows more than 50% success
rate in SLAM when employing the proposed active SLAM
algorithm [44], an improvement in the robustness of SLAM
algorithms by relying on design space exploration.

3) Comparative DSE of Dense Versus Semi-Dense
SLAM: Another different direction in any DSE work is
the performance exploration across multiple algorithms.
While multidomain DSE explores different parameters of a
given algorithm, the comparative DSE, presented in [108],
explores the performance of two different algorithms
under different parametric choices.

In comparative DSE, two state-of-the-art SLAM
algorithms, KinectFusion and LSD-SLAM, are compared
on multiple data sets. Using SLAMBench benchmarking
capabilities, a full design space exploration is performed
over algorithmic parameters, compilation flags and
multiple architectures. Such thorough parameter space
exploration gives us key insights on the behavior of
each algorithm in different operative conditions and
the relationship between different sets of distinct, yet
correlated, parameters blocks.

As an example, in Fig. 23 we show the result of compar-
ative DSE between LSD-SLAM and KinectFusion in terms
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Fig. 23. Distribution of absolute trajectory error (ATE) using

KinectFusion and LSD-SLAM, run with default parameters on

Desktop. The mean absolute error has been highlighted: (a) TUM

RGB-D fr2_xyz and (b) ICL-NUIM lr_kt2.

of their ATE distribution across two scenes of two different
data sets. The histograms display the error distribution
across the entire sequence, from which we can get a sense
of how well the algorithms are performing for the whole
trajectory. We hope that these analyses enable researchers
to develop more robust algorithms. Without the holistic
approach enabled by SLAMBench such insights would have
been much harder to obtain. This sort of information is
invaluable for a wild range of SLAM practitioners, from
VR/AR designers to roboticists that want to select/modify
the best algorithm for their particular use case.

B. Crowdsourcing

The SLAMBench framework and more specifically its
various KinectFusion implementations has been ported to
Android. More than 2000 downloads have been made
since its official release on the Google Play store. We
received numerous positive feedback reports and this
application has generated a great deal of interest in the
community and with industrial partners.

This level of uptake allowed us to collect data from
more than 100 different mobile phones. Fig. 24 shows the
speedup across many models of Android devices that we
have experimented with. Clearly, it is possible to achieve
more than twice runtime speed by tuning the system
parameters using the tools introduced in the paper. We

Fig. 24. By combining design space exploration and

crowdsourcing, we checked that design space exploration efficiently

works on various types of platforms. This figure demonstrates the

speed-up of the KinectFusion algorithm on various different types of

Android devices. Each bar represents the speed-up for one type

(model) of Android device. The models are not shown for the sake of

clarity of the figure.

plan to use these data to analyze the performance of
KinectFusion on those platforms and to provide techniques
to optimize KinectFusion performance depending of the
targeted platform. This work will apply transfer-learning
methodology. We believe that by combining design space
exploration [106] and the collected data, we can train a
decision machine to select code variants and configura-
tions for diverse mobile platforms automatically.

VI. C O N C L U S I O N

In this paper we focused on SLAM, which is an enabling
technology in many fields including virtual reality, aug-
mented reality, and robotics. The paper presented several
contributions across hardware architecture, compiler and
runtime software systems, and computer vision algorith-
mic layers of SLAM pipeline. We proposed not only con-
tributions at each layer, but also holistic methods that
optimize the system as a whole.

In computer vision and applications, we presented
benchmarking tools that allow us to select a proper data
set and use it to evaluate different SLAM algorithms.
SLAMBench is used to evaluate the KinectFusion algorithm
on various different hardware platforms. SLAMBench2 is
used to compare various SLAM algorithms very efficiently.
We also extended the KinectFusion algorithm, such that
it can be used in robotic path planning and navigation
algorithms by mapping both occupied and free space
of the environment. Moreover, we explored new sensing
technologies such as focal-plane sensor–processor arrays,
which have low power consumption and high effective
frame rate.

The software layer of this project demonstrated that
software optimization can be used to deliver significant
improvements in power consumption and speed trade-
off when specialized for computer vision applications.
We explored static, dynamic, and hybrid approaches
and focused their application on the KinectFusion algo-
rithm. Being able to select and deploy optimizations adap-
tively is particularly beneficial in the context of dynamic
runtime environment where application-specific details
can strongly improve the result of JIT compilation and thus
the speed of the program.

The project has made a range of contributions across
the hardware design and development field. Profiling tools
have been developed in order to locate and evaluate per-
formance bottlenecks in both native and managed appli-
cations. These bottlenecks could then be addressed by
a range of specialization techniques, and the specialized
hardware evaluated using the presented simulation tech-
niques. This represents a full workflow for creating new
hardware for computer vision applications which might be
used in future platforms.

Finally, we report on holistic methods that exploit our
ability to explore the design space at every level in a
holistic fashion. We demonstrated several design space
exploration methods where we showed that it is possible
to fine-tune the system such that we can meet desired
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performance metrics. It is also shown that we can increase
public engagement in accelerating the design space explo-
ration by crowdsourcing.

In future work, two main directions will be followed:
The first is exploiting our knowledge from all domains of
this paper to select a SLAM algorithm and design a chip
that is customized to efficiently implement the algorithm.
This approach will utilize data from SLAMBench2 and

real-world experiments to drive the design of a specialized
vision processor. The second direction is utilizing the tools
and techniques presented here to develop a standardized
method that takes the high-level scene understanding
functionalities and develops the optimal code that
maps the functionalities to the heterogeneous resources
available, optimizing for the desired performance
metrics.
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